» Articles » PMID: 31948106

MiR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2020 Jan 18
PMID 31948106
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The selective elimination of dysfunctional mitochondria through mitophagy is crucial for preserving mitochondrial quality and cellular homeostasis. The most described mitophagy pathway is regulated by a positive ubiquitylation feedback loop in which the PINK1 (PTEN induced kinase 1) kinase phosphorylates both ubiquitin and the E3 ubiquitin ligase PRKN (Parkin RBR E3 ubiquitin ligase), also known as PARKIN. This event recruits PRKN to the mitochondria, thus amplifying ubiquitylation signal. Here we report that miR-218 targets PRKN and negatively regulates PINK1/PRKN-mediated mitophagy. Overexpression of miR-218 reduces PRKN mRNA levels, thus also reducing protein content and deregulating the E3 ubiquitin ligase action. In fact, following miR-218 overexpression, mitochondria result less ubiquitylated and the autophagy machinery fails to proceed with correct mitochondrial clearance. Since mitophagy defects are associated with various human diseases, these results qualify miR-218 as a promising therapeutic target for human diseases.

Citing Articles

The Intersection of Mitophagy and Autism Spectrum Disorder: A Systematic Review.

Kovacheva E, Gevezova M, Mehterov N, Kazakova M, Sarafian V Int J Mol Sci. 2025; 26(5).

PMID: 40076836 PMC: 11899999. DOI: 10.3390/ijms26052217.


Mitochondrial microRNAs: Key Drivers in Unraveling Neurodegenerative Diseases.

Yashooa R, Duranti E, Conconi D, Lavitrano M, Mustafa S, Villa C Int J Mol Sci. 2025; 26(2).

PMID: 39859339 PMC: 11766038. DOI: 10.3390/ijms26020626.


The Mitochondrial Blueprint: Unlocking Secondary Metabolite Production.

Li Y, Zhang Y, He X, Guo Z, Yang N, Bai G Metabolites. 2024; 14(12).

PMID: 39728492 PMC: 11677534. DOI: 10.3390/metabo14120711.


MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets.

Shaheen N, Shaheen A, Osama M, Nashwan A, Bharmauria V, Flouty O NPJ Parkinsons Dis. 2024; 10(1):186.

PMID: 39369002 PMC: 11455891. DOI: 10.1038/s41531-024-00791-2.


Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review.

El Din Moawad M, Serag I, Alkhawaldeh I, Abbas A, Sharaf A, Alsalah S Mol Neurobiol. 2024; .

PMID: 39254911 DOI: 10.1007/s12035-024-04468-y.


References
1.
Radogna F, Cerella C, Gaigneaux A, Christov C, Dicato M, Diederich M . Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene. 2015; 35(29):3839-53. DOI: 10.1038/onc.2015.455. View

2.
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier C . PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010; 189(2):211-21. PMC: 2856912. DOI: 10.1083/jcb.200910140. View

3.
Wei Y, Chiang W, Sumpter Jr R, Mishra P, Levine B . Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2016; 168(1-2):224-238.e10. PMC: 5235968. DOI: 10.1016/j.cell.2016.11.042. View

4.
Cecconi F, Levine B . The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008; 15(3):344-357. PMC: 2688784. DOI: 10.1016/j.devcel.2008.08.012. View

5.
Tsai Y, Fishman P, Thakor N, Oyler G . Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem. 2003; 278(24):22044-55. DOI: 10.1074/jbc.M212235200. View