» Articles » PMID: 31932738

The LC3-conjugation Machinery Specifies the Loading of RNA-binding Proteins into Extracellular Vesicles

Abstract

Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.

Citing Articles

Oncogenic RAS induces a distinctive form of non-canonical autophagy mediated by the P38-ULK1-PI4KB axis.

Wang X, Li S, Lin S, Han Y, Zhan T, Huang Z Cell Res. 2025; .

PMID: 40055523 DOI: 10.1038/s41422-025-01085-9.


Engineered Extracellular Vesicles as a New Class of Nanomedicine.

Wen X, Hao Z, Yin H, Min J, Wang X, Sun S Chem Bio Eng. 2025; 2(1):3-22.

PMID: 39975802 PMC: 11835263. DOI: 10.1021/cbe.4c00122.


Aging, cancer, and autophagy: connections and therapeutic perspectives.

Zapateria B, Arias E Front Mol Biosci. 2025; 11:1516789.

PMID: 39935707 PMC: 11811537. DOI: 10.3389/fmolb.2024.1516789.


A 'torn bag mechanism' of small extracellular vesicle release via limiting membrane rupture of en bloc released amphisomes (amphiectosomes).

Visnovitz T, Lenzinger D, Koncz A, Vizi P, Barkai T, Vukman K Elife. 2025; 13.

PMID: 39918406 PMC: 11805505. DOI: 10.7554/eLife.95828.


Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights.

Li X, Zhao H Exp Hematol Oncol. 2025; 14(1):12.

PMID: 39893499 PMC: 11786567. DOI: 10.1186/s40164-025-00603-0.


References
1.
Kaur J, Debnath J . Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015; 16(8):461-72. DOI: 10.1038/nrm4024. View

2.
Lock R, Kenific C, Leidal A, Salas E, Debnath J . Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 2014; 4(4):466-79. PMC: 3980002. DOI: 10.1158/2159-8290.CD-13-0841. View

3.
Bel S, Pendse M, Wang Y, Li Y, Ruhn K, Hassell B . Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 2017; 357(6355):1047-1052. PMC: 5702267. DOI: 10.1126/science.aal4677. View

4.
DeSelm C, Miller B, Zou W, Beatty W, van Meel E, Takahata Y . Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011; 21(5):966-74. PMC: 3244473. DOI: 10.1016/j.devcel.2011.08.016. View

5.
Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming F, Trung M . Atg5 Disassociates the VV-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell. 2017; 43(6):716-730.e7. DOI: 10.1016/j.devcel.2017.11.018. View