» Articles » PMID: 31919110

Whole Genome Sequencing and Comparative Genomics of Two Nematicidal Strains Reveals a Wide Range of Possible Virulence Factors

Overview
Journal G3 (Bethesda)
Date 2020 Jan 11
PMID 31919110
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

nematicidal bacterial strains are used to control plant parasitic nematode infestation of crops in agricultural production. Proteases are presumed to be the primary nematode virulence factors in nematicidal degrading the nematode cuticle and other organs. We determined and compared the whole genome sequences of two nematicidal strains. Comparative genomics with a particular focus on possible virulence determinants revealed a wider range of possible virulence factors in a isolate from a commercial bionematicide and a wild type sp. isolate with nematicidal activity. The resulting 4.6 Mb I-1582 and 5.3 Mb sp. ZZV12-4809 genome assemblies contain respectively 18 and 19 homologs to nematode-virulent proteases, two nematode-virulent chitinase homologs in ZZV12-4809 and 28 and 36 secondary metabolite biosynthetic clusters, projected to encode antibiotics, small peptides, toxins and siderophores. The results of this study point to the genetic capability of and related species for nematode virulence through a range of direct and indirect mechanisms.

Citing Articles

Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste.

Gerlicz W, Sypka M, Jodlowska I, Bialkowska A Molecules. 2024; 29(14).

PMID: 39064958 PMC: 11280386. DOI: 10.3390/molecules29143380.


Lipopeptides from Bacillus velezensis ZLP-101 and their mode of action against bean aphids Acyrthosiphon pisum Harris.

Liu Q, Zhao W, Li W, Zhang F, Wang Y, Wang J BMC Microbiol. 2024; 24(1):231.

PMID: 38951812 PMC: 11218388. DOI: 10.1186/s12866-024-03378-2.


Whole genome analysis of 160, biological control agent of corn head smut.

Gonzalez-Leon Y, De la Vega-Camarillo E, Ramirez-Vargas R, Anducho-Reyes M, Mercado-Flores Y Microbiol Spectr. 2024; 12(4):e0326423.

PMID: 38363138 PMC: 10986511. DOI: 10.1128/spectrum.03264-23.


Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation.

Ansari M, Devi B, Sarkar A, Chattopadhyay A, Satnami L, Balu P J Xenobiot. 2023; 13(4):572-603.

PMID: 37873814 PMC: 10594471. DOI: 10.3390/jox13040037.


Genomic, Antimicrobial, and Aphicidal Traits of ATR2, and Its Biocontrol Potential against Ginger Rhizome Rot Disease Caused by .

Liang L, Fu Y, Deng S, Wu Y, Gao M Microorganisms. 2022; 10(1).

PMID: 35056513 PMC: 8778260. DOI: 10.3390/microorganisms10010063.


References
1.
Garcia-Gonzalez E, Muller S, Hertlein G, Heid N, Sussmuth R, Genersch E . Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiologyopen. 2014; 3(5):642-56. PMC: 4234257. DOI: 10.1002/mbo3.195. View

2.
Geng C, Tang Z, Peng D, Shao Z, Zhu L, Zheng J . Draft genome sequence of Bacillus firmus DS1. J Biotechnol. 2014; 177:20-1. DOI: 10.1016/j.jbiotec.2014.02.012. View

3.
Brettin T, Davis J, Disz T, Edwards R, Gerdes S, Olsen G . RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015; 5:8365. PMC: 4322359. DOI: 10.1038/srep08365. View

4.
Davis J, Gerdes S, Olsen G, Olson R, Pusch G, Shukla M . PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front Microbiol. 2016; 7:118. PMC: 4744870. DOI: 10.3389/fmicb.2016.00118. View

5.
Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, Sacchi L . Flavobacteria as intracellular symbionts in cockroaches. Proc Biol Sci. 1994; 257(1348):43-8. DOI: 10.1098/rspb.1994.0092. View