» Articles » PMID: 31901249

A Robust Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits

Overview
Journal Am J Hum Genet
Publisher Cell Press
Specialty Genetics
Date 2020 Jan 6
PMID 31901249
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Gene-environment interactions (GxE) can be fundamental in applications ranging from functional genomics to precision medicine and is a conjectured source of substantial heritability. However, unbiased methods to profile GxE genome-wide are nascent and, as we show, cannot accommodate general environment variables, modest sample sizes, heterogeneous noise, and binary traits. To address this gap, we propose a simple, unifying mixed model for gene-environment interaction (GxEMM). In simulations and theory, we show that GxEMM can dramatically improve estimates and eliminate false positives when the assumptions of existing methods fail. We apply GxEMM to a range of human and model organism datasets and find broad evidence of context-specific genetic effects, including GxSex, GxAdversity, and GxDisease interactions across thousands of clinical and molecular phenotypes. Overall, GxEMM is broadly applicable for testing and quantifying polygenic interactions, which can be useful for explaining heritability and invaluable for determining biologically relevant environments.

Citing Articles

Multi-omics approaches for understanding gene-environment interactions in noncommunicable diseases: techniques, translation, and equity issues.

Alemu R, Sharew N, Arsano Y, Ahmed M, Tekola-Ayele F, Mersha T Hum Genomics. 2025; 19(1):8.

PMID: 39891174 PMC: 11786457. DOI: 10.1186/s40246-025-00718-9.


Characterizing the genetic architecture of drug response using gene-context interaction methods.

Sadowski M, Thompson M, Mefford J, Haldar T, Oni-Orisan A, Border R Cell Genom. 2024; 4(12):100722.

PMID: 39637863 PMC: 11701255. DOI: 10.1016/j.xgen.2024.100722.


Allele frequency impacts the cross-ancestry portability of gene expression prediction in lymphoblastoid cell lines.

Saitou M, Dahl A, Wang Q, Liu X Am J Hum Genet. 2024; 111(12):2814-2825.

PMID: 39549695 PMC: 11639078. DOI: 10.1016/j.ajhg.2024.10.009.


A scalable adaptive quadratic kernel method for interpretable epistasis analysis in complex traits.

Fu B, Anand P, Anand A, Mefford J, Sankararaman S Genome Res. 2024; 34(9):1294-1303.

PMID: 39209554 PMC: 11529862. DOI: 10.1101/gr.279140.124.


LDER-GE estimates phenotypic variance component of gene-environment interactions in human complex traits accurately with GE interaction summary statistics and full LD information.

Dong Z, Jiang W, Li H, DeWan A, Zhao H Brief Bioinform. 2024; 25(4).

PMID: 38980374 PMC: 11232466. DOI: 10.1093/bib/bbae335.


References
1.
Ma L, Semick S, Chen Q, Li C, Tao R, Price A . Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Mol Psychiatry. 2019; 25(4):831-843. DOI: 10.1038/s41380-018-0293-0. View

2.
Zhernakova D, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W . Identification of context-dependent expression quantitative trait loci in whole blood. Nat Genet. 2016; 49(1):139-145. DOI: 10.1038/ng.3737. View

3.
Exner D, Dries D, Domanski M, Cohn J . Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. N Engl J Med. 2001; 344(18):1351-7. DOI: 10.1056/NEJM200105033441802. View

4.
Dudbridge F, Fletcher O . Gene-environment dependence creates spurious gene-environment interaction. Am J Hum Genet. 2014; 95(3):301-7. PMC: 4157149. DOI: 10.1016/j.ajhg.2014.07.014. View

5.
Yang J, Benyamin B, McEvoy B, Gordon S, Henders A, Nyholt D . Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010; 42(7):565-9. PMC: 3232052. DOI: 10.1038/ng.608. View