6.
Selli C, Tosun M
. Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells. J Physiol Biochem. 2016; 72(2):245-53.
PMC: 4873523.
DOI: 10.1007/s13105-016-0474-8.
View
7.
Cahalan M, Chandy K
. The functional network of ion channels in T lymphocytes. Immunol Rev. 2009; 231(1):59-87.
PMC: 3133616.
DOI: 10.1111/j.1600-065X.2009.00816.x.
View
8.
Teisseyre A, Palko-Labuz A, Uryga A, Michalak K
. The Influence of 6-Prenylnaringenin and Selected Non-prenylated Flavonoids on the Activity of Kv1.3 Channels in Human Jurkat T Cells. J Membr Biol. 2018; 251(5-6):695-704.
DOI: 10.1007/s00232-018-0046-7.
View
9.
Yin S, Jiang L, Yi H, Han S, Yang D, Liu M
. Different residues in channel turret determining the selectivity of ADWX-1 inhibitor peptide between Kv1.1 and Kv1.3 channels. J Proteome Res. 2008; 7(11):4890-7.
DOI: 10.1021/pr800494a.
View
10.
Liu J, Ma Y, Yin S, Zhao R, Fan S, Hu Y
. Molecular cloning and functional identification of a new K(+) channel blocker, LmKTx10, from the scorpion Lychas mucronatus. Peptides. 2008; 30(4):675-80.
DOI: 10.1016/j.peptides.2008.11.015.
View
11.
Zou Y, Zhang F, Li Y, Wang Y, Li Y, Long Z
. Cloning, expression and identification of KTX-Sp4, a selective Kv1.3 peptidic blocker from . Cell Biosci. 2017; 7:60.
PMC: 5674823.
DOI: 10.1186/s13578-017-0187-x.
View
12.
Feske S, Wulff H, Skolnik E
. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015; 33:291-353.
PMC: 4822408.
DOI: 10.1146/annurev-immunol-032414-112212.
View
13.
Zhao Y, Huang J, Yuan X, Peng B, Liu W, Han S
. Toxins Targeting the Kv1.3 Channel: Potential Immunomodulators for Autoimmune Diseases. Toxins (Basel). 2015; 7(5):1749-64.
PMC: 4448172.
DOI: 10.3390/toxins7051749.
View
14.
Yin S, Hu Q, Luo J, Li Y, Lu C, Chen X
. Loureirin B, an essential component of Sanguis Draxonis, inhibits Kv1.3 channel and suppresses cytokine release from Jurkat T cells. Cell Biosci. 2015; 4:78.
PMC: 4417528.
DOI: 10.1186/2045-3701-4-78.
View
15.
Santibanez-Lopez C, Francke O, Ureta C, Possani L
. Scorpions from Mexico: From Species Diversity to Venom Complexity. Toxins (Basel). 2015; 8(1).
PMC: 4728524.
DOI: 10.3390/toxins8010002.
View
16.
Luna-Ramirez K, Bartok A, Restano-Cassulini R, Quintero-Hernandez V, Coronas F, Christensen J
. Structure, molecular modeling, and function of the novel potassium channel blocker urotoxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi. Mol Pharmacol. 2014; 86(1):28-41.
DOI: 10.1124/mol.113.090183.
View
17.
Ortiz E, Gurrola G, Schwartz E, Possani L
. Scorpion venom components as potential candidates for drug development. Toxicon. 2014; 93:125-35.
PMC: 7130864.
DOI: 10.1016/j.toxicon.2014.11.233.
View
18.
Valle-Reyes S, Valencia-Cruz G, Linan-Rico L, Pottosin I, Dobrovinskaya O
. Differential Activity of Voltage- and Ca-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case. Front Physiol. 2018; 9:499.
PMC: 5954129.
DOI: 10.3389/fphys.2018.00499.
View
19.
Shinohara Y, Tsukimoto M
. Adenine Nucleotides Attenuate Murine T Cell Activation Induced by Concanavalin A or T Cell Receptor Stimulation. Front Pharmacol. 2018; 8:986.
PMC: 5767601.
DOI: 10.3389/fphar.2017.00986.
View
20.
Olamendi-Portugal T, Bartok A, Zamudio-Zuniga F, Balajthy A, Becerril B, Panyi G
. Isolation, chemical and functional characterization of several new K(+)-channel blocking peptides from the venom of the scorpion Centruroides tecomanus. Toxicon. 2016; 115:1-12.
DOI: 10.1016/j.toxicon.2016.02.017.
View