» Articles » PMID: 31878521

Visible-light Silicon Nitride Waveguide Devices and Implantable Neurophotonic Probes on Thinned 200 Mm Silicon Wafers

Overview
Journal Opt Express
Date 2019 Dec 28
PMID 31878521
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

We present passive, visible light silicon nitride waveguides fabricated on ≈ 100 µm thick 200 mm silicon wafers using deep ultraviolet lithography. The best-case propagation losses of single-mode waveguides were ≤ 2.8 dB/cm and ≤ 1.9 dB/cm over continuous wavelength ranges of 466-550 nm and 552-648 nm, respectively. In-plane waveguide crossings and multimode interference power splitters are also demonstrated. Using this platform, we realize a proof-of-concept implantable neurophotonic probe for optogenetic stimulation of rodent brains. The probe has grating coupler emitters defined on a 4 mm long, 92 µm thick shank and operates over a wide wavelength range of 430-645 nm covering the excitation spectra of multiple opsins and fluorophores used for brain stimulation and imaging.

Citing Articles

A Single Sub-Millimetric Metasurface-Based Optical Element for Lattice Bessel Beam Excitation Enabling Brain Activity Recordings In Vivo.

Archetti A, Bruzzone M, Tagliabue G, Maschio M Small. 2025; 21(9):e2409258.

PMID: 39895227 PMC: 11878255. DOI: 10.1002/smll.202409258.


Implantable silicon neural probes with nanophotonic phased arrays for single-lobe beam steering.

Chen F, Sharma A, Xue T, Jung Y, Govdeli A, Mak J Commun Eng. 2024; 3(1):182.

PMID: 39695300 PMC: 11655650. DOI: 10.1038/s44172-024-00328-8.


A thin film lithium niobate near-infrared platform for multiplexing quantum nodes.

Assumpcao D, Renaud D, Baradari A, Zeng B, De-Eknamkul C, Xin C Nat Commun. 2024; 15(1):10459.

PMID: 39622814 PMC: 11612428. DOI: 10.1038/s41467-024-54541-2.


Stress-Dependent Optical Extinction in Low-Pressure Chemical Vapor Deposition Silicon Nitride Measured by Nanomechanical Photothermal Sensing.

Kanellopulos K, West R, Emminger S, Martini P, Sauer M, Foelske A Nano Lett. 2024; 24(36):11262-11268.

PMID: 39213585 PMC: 11403763. DOI: 10.1021/acs.nanolett.4c02902.


Implantable photonic neural probes with out-of-plane focusing grating emitters.

Xue T, Stalmashonak A, Chen F, Ding P, Luo X, Chua H Sci Rep. 2024; 14(1):13812.

PMID: 38877050 PMC: 11178810. DOI: 10.1038/s41598-024-64037-0.


References
1.
Han X . In vivo application of optogenetics for neural circuit analysis. ACS Chem Neurosci. 2012; 3(8):577-84. PMC: 3419447. DOI: 10.1021/cn300065j. View

2.
Sun J, Timurdogan E, Yaacobi A, Hosseini E, Watts M . Large-scale nanophotonic phased array. Nature. 2013; 493(7431):195-9. DOI: 10.1038/nature11727. View

3.
Deisseroth K . Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015; 18(9):1213-25. PMC: 4790845. DOI: 10.1038/nn.4091. View

4.
Day R, Davidson M . The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev. 2009; 38(10):2887-921. PMC: 2910338. DOI: 10.1039/b901966a. View

5.
Chen T, Wardill T, Sun Y, Pulver S, Renninger S, Baohan A . Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013; 499(7458):295-300. PMC: 3777791. DOI: 10.1038/nature12354. View