» Articles » PMID: 31866442

A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells

Overview
Journal Cell Metab
Publisher Cell Press
Date 2019 Dec 24
PMID 31866442
Citations 194
Authors
Affiliations
Soon will be listed here.
Abstract

Glutamine is an essential nutrient that regulates energy production, redox homeostasis, and signaling in cancer cells. Despite the importance of glutamine in mitochondrial metabolism, the mitochondrial glutamine transporter has long been unknown. Here, we show that the SLC1A5 variant plays a critical role in cancer metabolic reprogramming by transporting glutamine into mitochondria. The SLC1A5 variant has an N-terminal targeting signal for mitochondrial localization. Hypoxia-induced gene expression of the SLC1A5 variant is mediated by HIF-2α. Overexpression of the SLC1A5 variant mediates glutamine-induced ATP production and glutathione synthesis and confers gemcitabine resistance to pancreatic cancer cells. SLC1A5 variant knockdown and overexpression alter cancer cell and tumor growth, supporting an oncogenic role. This work demonstrates that the SLC1A5 variant is a mitochondrial glutamine transporter for cancer metabolic reprogramming.

Citing Articles

Metabolic reprogramming in cancer and senescence.

Zhang Y, Tang J, Jiang C, Yi H, Guang S, Yin G MedComm (2020). 2025; 6(3):e70055.

PMID: 40046406 PMC: 11879902. DOI: 10.1002/mco2.70055.


Ferroptosis: iron release mechanisms in the bioenergetic process.

Lee J, Roh J Cancer Metastasis Rev. 2025; 44(1):36.

PMID: 40000477 DOI: 10.1007/s10555-025-10252-8.


Solute carriers: The gatekeepers of metabolism.

Khan A, Liu Y, Gad M, Kenny T, Birsoy K Cell. 2025; 188(4):869-884.

PMID: 39983672 PMC: 11875512. DOI: 10.1016/j.cell.2025.01.015.


Cellular senescence: from homeostasis to pathological implications and therapeutic strategies.

Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X Front Immunol. 2025; 16:1534263.

PMID: 39963130 PMC: 11830604. DOI: 10.3389/fimmu.2025.1534263.


Glutamine and cancer: metabolism, immune microenvironment, and therapeutic targets.

Nan D, Yao W, Huang L, Liu R, Chen X, Xia W Cell Commun Signal. 2025; 23(1):45.

PMID: 39856712 PMC: 11760113. DOI: 10.1186/s12964-024-02018-6.