» Articles » PMID: 31862907

Characterizing the Maximum Number of Layers in Chemically Exfoliated Graphene

Abstract

An efficient route to synthesize macroscopic amounts of graphene is highly desired and bulk characterization of such samples, in terms of the number of layers, is equally important. We present a Raman spectroscopy-based method to determine the typical upper limit of the number of graphene layers in chemically exfoliated graphene. We utilize a controlled vapour-phase potassium intercalation technique and identify a lightly doped stage, where the Raman modes of undoped and doped few-layer graphene flakes coexist. The spectra can be unambiguously distinguished from alkali doped graphite, and modeling with the typical upper limit of the layers yields an upper limit of flake thickness of five layers with a significant single-layer graphene content. Complementary statistical AFM measurements on individual few-layer graphene flakes find a consistent distribution of the layer numbers.

Citing Articles

Charge Effects and Electron Phonon Coupling in Potassium-Doped Graphene.

Marchiani D, Frisenda R, Mariani C, Sbroscia M, Caruso T, De Luca O ACS Omega. 2024; 9(38):39546-39553.

PMID: 39346880 PMC: 11425604. DOI: 10.1021/acsomega.4c03543.


van der Waals gap modulation of graphene oxide through mono-Boc ethylenediamine anchoring for superior Li-ion batteries.

Mandal S, Pillai V, Ranjana Ponraj M, K M T, Bhagavathsingh J, Grage S Energy Adv. 2024; 3(8):1977-1991.

PMID: 39131508 PMC: 11308804. DOI: 10.1039/d4ya00217b.


Effect of Microwave Treatment in a High Pressure Microwave Reactor on Graphene Oxide Reduction Process-TEM, XRD, Raman, IR and Surface Electron Spectroscopic Studies.

Lesiak B, Trykowski G, Toth J, Biniak S, Kover L, Rangam N Materials (Basel). 2021; 14(19).

PMID: 34640126 PMC: 8510118. DOI: 10.3390/ma14195728.


Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures.

Gudaitis R, Lazauskas A, Jankauskas S, Meskinis S Materials (Basel). 2020; 13(24).

PMID: 33321771 PMC: 7763619. DOI: 10.3390/ma13245630.


Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene.

Markus B, Szirmai P, Edelthalhammer K, Eckerlein P, Hirsch A, Hauke F ACS Nano. 2020; 14(6):7492-7501.

PMID: 32484657 PMC: 7315639. DOI: 10.1021/acsnano.0c03191.

References
1.
Valles C, Drummond C, Saadaoui H, Furtado C, He M, Roubeau O . Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc. 2008; 130(47):15802-4. DOI: 10.1021/ja808001a. View

2.
Ferrari A, Basko D . Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013; 8(4):235-46. DOI: 10.1038/nnano.2013.46. View

3.
Lui C, Malard L, Kim S, Lantz G, Laverge F, Saito R . Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 2012; 12(11):5539-44. DOI: 10.1021/nl302450s. View

4.
Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S . High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008; 3(9):563-8. DOI: 10.1038/nnano.2008.215. View

5.
Gupta A, Russin T, Gutierrez H, Eklund P . Probing graphene edges via Raman scattering. ACS Nano. 2009; 3(1):45-52. DOI: 10.1021/nn8003636. View