» Articles » PMID: 31861579

Cell-Based Mechanosensation, Epigenetics, and Non-Coding RNAs in Progression of Cardiac Fibrosis

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2019 Dec 22
PMID 31861579
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The heart is par excellence the 'in-motion' organ in the human body. Compelling evidence shows that, besides generating forces to ensure continuous blood supply (e.g., myocardial contractility) or withstanding passive forces generated by flow (e.g., shear stress on endocardium, myocardial wall strain, and compression strain at the level of cardiac valves), cells resident in the heart respond to mechanical cues with the activation of mechanically dependent molecular pathways. Cardiac stromal cells, most commonly named cardiac fibroblasts, are central in the pathologic evolution of the cardiovascular system. In their normal function, these cells translate mechanical cues into signals that are necessary to renew the tissues, e.g., by continuously rebuilding the extracellular matrix being subjected to mechanical stress. In the presence of tissue insults (e.g., ischemia), inflammatory cues, or modifiable/unmodifiable risk conditions, these mechanical signals may be 'misinterpreted' by cardiac fibroblasts, giving rise to pathology programming. In fact, these cells are subject to changing their phenotype from that of matrix renewing to that of matrix scarring cells-the so-called myo-fibroblasts-involved in cardiac fibrosis. The links between alterations in the abilities of cardiac fibroblasts to 'sense' mechanical cues and molecular pathology programming are still under investigation. On the other hand, various evidence suggests that cell mechanics may control stromal cells phenotype by modifying the epigenetic landscape, and this involves specific non-coding RNAs. In the present contribution, we will provide examples in support of this more integrated vision of cardiac fibrotic progression based on the decryption of mechanical cues in the context of epigenetic and non-coding RNA biology.

Citing Articles

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Li X, Wang K, Liu J, Li Y Discov Oncol. 2025; 16(1):44.

PMID: 39808350 PMC: 11732816. DOI: 10.1007/s12672-025-01779-x.


Modelling and targeting mechanical forces in organ fibrosis.

Mascharak S, Guo J, Griffin M, Berry C, Wan D, Longaker M Nat Rev Bioeng. 2024; 2(4):305-323.

PMID: 39552705 PMC: 11567675. DOI: 10.1038/s44222-023-00144-3.


Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases.

Komal S, Gao Y, Wang Z, Yu Q, Wang P, Zhang L Pharmaceuticals (Basel). 2024; 17(10).

PMID: 39458994 PMC: 11510975. DOI: 10.3390/ph17101353.


Improving regulatory T cell production through mechanosensing.

Shi L, Lim J, Kam L J Biomed Mater Res A. 2024; 112(7):1138-1148.

PMID: 38450935 PMC: 11065567. DOI: 10.1002/jbm.a.37702.


Cardiac fibroblasts and mechanosensation in heart development, health and disease.

Pesce M, Duda G, Forte G, Girao H, Raya A, Roca-Cusachs P Nat Rev Cardiol. 2022; 20(5):309-324.

PMID: 36376437 DOI: 10.1038/s41569-022-00799-2.


References
1.
Noguchi S, Saito A, Nagase T . YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer. Int J Mol Sci. 2018; 19(11). PMC: 6274979. DOI: 10.3390/ijms19113674. View

2.
Li C, Talele N, Boo S, Koehler A, Knee-Walden E, Balestrini J . MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat Mater. 2016; 16(3):379-389. DOI: 10.1038/nmat4780. View

3.
Costantino S, Ambrosini S, Paneni F . The epigenetic landscape in the cardiovascular complications of diabetes. J Endocrinol Invest. 2018; 42(5):505-511. DOI: 10.1007/s40618-018-0956-3. View

4.
Mann J, Chu D, Maxwell A, Oakley F, Zhu N, Tsukamoto H . MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2009; 138(2):705-14, 714.e1-4. PMC: 2819585. DOI: 10.1053/j.gastro.2009.10.002. View

5.
van der Harst P, De Windt L, Chambers J . Translational Perspective on Epigenetics in Cardiovascular Disease. J Am Coll Cardiol. 2017; 70(5):590-606. PMC: 5543329. DOI: 10.1016/j.jacc.2017.05.067. View