» Articles » PMID: 31843917

Renewable Electricity Storage Using Electrolysis

Overview
Specialty Science
Date 2019 Dec 18
PMID 31843917
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Electrolysis converts electrical energy into chemical energy by storing electrons in the form of stable chemical bonds. The chemical energy can be used as a fuel or converted back to electricity when needed. Water electrolysis to hydrogen and oxygen is a well-established technology, whereas fundamental advances in CO electrolysis are still needed to enable short-term and seasonal energy storage in the form of liquid fuels. This paper discusses the electrolytic reactions that can potentially enable renewable energy storage, including water, CO and N electrolysis. Recent progress and major obstacles associated with electrocatalysis and mass transfer management at a system level are reviewed. We conclude that knowledge and strategies are transferable between these different electrochemical technologies, although there are also unique complications that arise from the specifics of the reactions involved.

Citing Articles

Transition-Metal-Doped Nickel-Cobalt Layered Double Hydroxide Catalysts for an Efficient Oxygen Evolution Reaction.

Li Z, Yi W, Pang Q, Zhang M, Liu Z Materials (Basel). 2025; 18(4).

PMID: 40004400 PMC: 11857650. DOI: 10.3390/ma18040877.


Texas: A green hydrogen hub to decarbonize the United States and beyond.

Lin H, Hernandez Gonzalez A, Nielsen C, McElroy M Proc Natl Acad Sci U S A. 2024; 121(50):e2321347121.

PMID: 39621911 PMC: 11648622. DOI: 10.1073/pnas.2321347121.


Spin-dependent electrocatalysis.

Chen Z, Li X, Ma H, Zhang Y, Peng J, Ma T Natl Sci Rev. 2024; 11(9):nwae314.

PMID: 39363911 PMC: 11448474. DOI: 10.1093/nsr/nwae314.


Constructing Amorphous-Crystalline Interfacial Bifunctional Site Island-Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution.

Sun P, Zheng X, Chen A, Zheng G, Wu Y, Long M Adv Sci (Weinh). 2024; 11(24):e2309927.

PMID: 38498774 PMC: 11199995. DOI: 10.1002/advs.202309927.


Developing a class of dual atom materials for multifunctional catalytic reactions.

Wang X, Xu L, Li C, Zhang C, Yao H, Xu R Nat Commun. 2023; 14(1):7210.

PMID: 37938254 PMC: 10632389. DOI: 10.1038/s41467-023-42756-8.


References
1.
Duan Y, Meng F, Liu K, Yi S, Li S, Yan J . Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO Reduction to Liquid Fuels with High Faradaic Efficiencies. Adv Mater. 2018; 30(14):e1706194. DOI: 10.1002/adma.201706194. View

2.
Hoang T, Verma S, Ma S, Fister T, Timoshenko J, Frenkel A . Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO to Ethylene and Ethanol. J Am Chem Soc. 2018; 140(17):5791-5797. DOI: 10.1021/jacs.8b01868. View

3.
Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J . Enhanced electrocatalytic CO reduction via field-induced reagent concentration. Nature. 2016; 537(7620):382-386. DOI: 10.1038/nature19060. View

4.
Kim D, Kley C, Li Y, Yang P . Copper nanoparticle ensembles for selective electroreduction of CO to C-C products. Proc Natl Acad Sci U S A. 2017; 114(40):10560-10565. PMC: 5635920. DOI: 10.1073/pnas.1711493114. View

5.
Hansen H, Varley J, Peterson A, Norskov J . Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. J Phys Chem Lett. 2015; 4(3):388-92. DOI: 10.1021/jz3021155. View