» Articles » PMID: 31834797

Investigation of the Adrenergic and Opioid Binding Affinities, Metabolic Stability, Plasma Protein Binding Properties, and Functional Effects of Selected Indole-Based Kratom Alkaloids

Abstract

Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.

Citing Articles

Exploring the Therapeutic Potential of Mitragynine and Corynoxeine: Kratom-Derived Indole and Oxindole Alkaloids for Pain Management.

Alford A, Moreno H, Benjamin M, Dickinson C, Hamann M Pharmaceuticals (Basel). 2025; 18(2).

PMID: 40006036 PMC: 11858930. DOI: 10.3390/ph18020222.


An exploratory study of the safety profile and neurocognitive function after single doses of mitragynine in humans.

Prevete E, Theunissen E, Kuypers K, Paci R, Reckweg J, Cavarra M Psychopharmacology (Berl). 2024; .

PMID: 39724441 DOI: 10.1007/s00213-024-06734-2.


Kratom (Mitragyna speciosa) use for self-management of pain: Insights from cross-sectional and ecological momentary assessment data.

Mun C, Panlilio L, Dunn K, Thrul J, McCurdy C, Epstein D J Pain. 2024; 26:104726.

PMID: 39505119 PMC: 11781972. DOI: 10.1016/j.jpain.2024.104726.


An in vitro evaluation on metabolism of mitragynine to 9-O-demethylmitragynine.

Melchert P, Zhang Q, Markowitz J Chem Biol Interact. 2024; 403:111247.

PMID: 39299374 PMC: 11579903. DOI: 10.1016/j.cbi.2024.111247.


Mitragynine and morphine produce dose-dependent bimodal action on food but not water intake in rats.

Zuarth Gonzalez J, Mottinelli M, McCurdy C, de Lartigue G, McMahon L, Wilkerson J Am J Physiol Regul Integr Comp Physiol. 2024; 327(6):R568-R579.

PMID: 39250542 PMC: 11687856. DOI: 10.1152/ajpregu.00128.2024.


References
1.
Kruegel A, Gassaway M, Kapoor A, Varadi A, Majumdar S, Filizola M . Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. J Am Chem Soc. 2016; 138(21):6754-64. PMC: 5189718. DOI: 10.1021/jacs.6b00360. View

2.
Minervini V, Dahal S, France C . Behavioral Characterization of κ Opioid Receptor Agonist Spiradoline and Cannabinoid Receptor Agonist CP55940 Mixtures in Rats. J Pharmacol Exp Ther. 2016; 360(2):280-287. PMC: 5267513. DOI: 10.1124/jpet.116.235630. View

3.
Niedernberg A, Tunaru S, Blaukat A, Harris B, Kostenis E . Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. J Biomol Screen. 2003; 8(5):500-10. DOI: 10.1177/1087057103257555. View

4.
Prozialeck W, Jivan J, Andurkar S . Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc. 2012; 112(12):792-9. View

5.
Hiranita T, Leon F, Felix J, Restrepo L, Reeves M, Pennington A . The effects of mitragynine and morphine on schedule-controlled responding and antinociception in rats. Psychopharmacology (Berl). 2019; 236(9):2725-2734. PMC: 6697625. DOI: 10.1007/s00213-019-05247-7. View