6.
Spector A
. Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res. 2008; 50 Suppl:S52-6.
PMC: 2674692.
DOI: 10.1194/jlr.R800038-JLR200.
View
7.
Roberts 2nd L, Sweetman B, OATES J
. Metabolism of thromboxane B2 in man. Identification of twenty urinary metabolites. J Biol Chem. 1981; 256(16):8384-93.
View
8.
Jahn U, Galano J, Durand T
. Beyond prostaglandins--chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed Engl. 2008; 47(32):5894-955.
DOI: 10.1002/anie.200705122.
View
9.
Zimmerman D, Coudron C
. Identification of Traumatin, a Wound Hormone, as 12-Oxo-trans-10-dodecenoic Acid. Plant Physiol. 1979; 63(3):536-41.
PMC: 542865.
DOI: 10.1104/pp.63.3.536.
View
10.
Patrignani P, Filabozzi P, Patrono C
. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 1982; 69(6):1366-72.
PMC: 370209.
DOI: 10.1172/jci110576.
View
11.
Brash A
. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999; 274(34):23679-82.
DOI: 10.1074/jbc.274.34.23679.
View
12.
Pedersen A, FitzGerald G
. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984; 311(19):1206-11.
DOI: 10.1056/NEJM198411083111902.
View
13.
Sud M, Fahy E, Cotter D, Brown A, Dennis E, Glass C
. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2006; 35(Database issue):D527-32.
PMC: 1669719.
DOI: 10.1093/nar/gkl838.
View
14.
FitzGerald G, OATES J, Hawiger J, Maas R, Roberts 2nd L, Lawson J
. Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J Clin Invest. 1983; 71(3):676-88.
PMC: 436917.
DOI: 10.1172/jci110814.
View
15.
Hamberg M, Samuelsson B
. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci U S A. 1974; 71(9):3400-4.
PMC: 433780.
DOI: 10.1073/pnas.71.9.3400.
View
16.
Rossner R, Kaeberlein M, Leiser S
. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. J Biol Chem. 2017; 292(27):11138-11146.
PMC: 5500783.
DOI: 10.1074/jbc.R117.779678.
View
17.
Meng J, Zhong D, Li L, Yuan Z, Yuan H, Xie C
. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-Dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab Dispos. 2015; 43(5):646-59.
DOI: 10.1124/dmd.114.061747.
View
18.
Schneider C, Pratt D, Porter N, Brash A
. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol. 2007; 14(5):473-88.
PMC: 2692746.
DOI: 10.1016/j.chembiol.2007.04.007.
View
19.
Huijbers M, Montersino S, Westphal A, Tischler D, van Berkel W
. Flavin dependent monooxygenases. Arch Biochem Biophys. 2013; 544:2-17.
DOI: 10.1016/j.abb.2013.12.005.
View
20.
Tolmie C, Smit M, Opperman D
. Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep. 2018; 36(2):326-353.
DOI: 10.1039/c8np00054a.
View