» Articles » PMID: 31817932

Fluorescent Single-Walled Carbon Nanotubes for Protein Detection

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2019 Dec 11
PMID 31817932
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Nanosensors have a central role in recent approaches to molecular recognition in applications like imaging, drug delivery systems, and phototherapy. Fluorescent nanoparticles are particularly attractive for such tasks owing to their emission signal that can serve as optical reporter for location or environmental properties. Single-walled carbon nanotubes (SWCNTs) fluoresce in the near-infrared part of the spectrum, where biological samples are relatively transparent, and they do not photobleach or blink. These unique optical properties and their biocompatibility make SWCNTs attractive for a variety of biomedical applications. Here, we review recent advancements in protein recognition using SWCNTs functionalized with either natural recognition moieties or synthetic heteropolymers. We emphasize the benefits of the versatile applicability of the SWCNT sensors in different systems ranging from single-molecule level to in-vivo sensing in whole animal models. Finally, we discuss challenges, opportunities, and future perspectives.

Citing Articles

Advances in RNAi-based nanoformulations: revolutionizing crop protection and stress tolerance in agriculture.

Mathur S, Chaturvedi A, Ranjan R Nanoscale Adv. 2025; .

PMID: 40046252 PMC: 11877354. DOI: 10.1039/d5na00044k.


Form and Function: The Factors That Influence the Efficacy of Nanomaterials for Gene Transfer to Plants.

Osmani Z, Kulka M Molecules. 2025; 30(3).

PMID: 39942552 PMC: 11820086. DOI: 10.3390/molecules30030446.


Molecular Determinants of Optical Modulation in ssDNA-Carbon Nanotube Biosensors.

Krasley A, Chakraborty S, Vukovic L, Beyene A ACS Nano. 2025; 19(8):7804-7820.

PMID: 39817860 PMC: 11887485. DOI: 10.1021/acsnano.4c13814.


Integrating Single-Walled Carbon Nanotubes into Supramolecular Assemblies: From Basic Interactions to Emerging Applications.

Wulf V, Bisker G ACS Nano. 2024; 18(43):29380-29393.

PMID: 39428637 PMC: 11526426. DOI: 10.1021/acsnano.4c06843.


Ratiometric Normalization of Near-Infrared Fluorescence in Defect-Engineered Single-Walled Carbon Nanotubes for Cholesterol Detection.

Basu S, Hendler-Neumark A, Bisker G J Phys Chem Lett. 2024; 15(42):10425-10434.

PMID: 39388300 PMC: 11514023. DOI: 10.1021/acs.jpclett.4c02022.


References
1.
Bisker G, Bakh N, Lee M, Ahn J, Park M, OConnell E . Insulin Detection Using a Corona Phase Molecular Recognition Site on Single-Walled Carbon Nanotubes. ACS Sens. 2018; 3(2):367-377. DOI: 10.1021/acssensors.7b00788. View

2.
Efros A, Nesbitt D . Origin and control of blinking in quantum dots. Nat Nanotechnol. 2016; 11(8):661-71. DOI: 10.1038/nnano.2016.140. View

3.
Bisker G, Dong J, Park H, Iverson N, Ahn J, Nelson J . Protein-targeted corona phase molecular recognition. Nat Commun. 2016; 7:10241. PMC: 4729864. DOI: 10.1038/ncomms10241. View

4.
Beyene A, Delevich K, Del Bonis-ODonnell J, Piekarski D, Lin W, Thomas A . Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci Adv. 2019; 5(7):eaaw3108. PMC: 6620097. DOI: 10.1126/sciadv.aaw3108. View

5.
Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J . Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307(5709):538-44. PMC: 1201471. DOI: 10.1126/science.1104274. View