Stark Tuning of the Silicon Vacancy in Silicon Carbide
Overview
Affiliations
We present a versatile scheme dedicated to exerting strong electric fields up to 0.5 MV/cm on color centers in hexagonal silicon carbide, employing transparent epitaxial graphene electrodes. In both the axial and basal direction equally strong electric fields can be selectively controlled. Investigating the silicon vacancy (V) in ensemble photoluminescence experiments, we report Stark splitting of the V1' line of 3 meV by a basal electrical field and a Stark shift of the V1 line of 1 meV in an axial electric field. The spectral fine-tuning of the V, being an important candidate for realizing quantum networks, paves the way for truly indistinguishable single-photon sources.
Check-probe spectroscopy of lifetime-limited emitters in bulk-grown silicon carbide.
van de Stolpe G, Feije L, Loenen S, Das A, Timmer G, de Jong T npj Quantum Inf. 2025; 11(1):31.
PMID: 39996104 PMC: 11846708. DOI: 10.1038/s41534-025-00985-3.
A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics.
Shangguan Q, Lv Y, Jiang C Nanomaterials (Basel). 2024; 14(20).
PMID: 39453015 PMC: 11510050. DOI: 10.3390/nano14201679.
Electrical manipulation of telecom color centers in silicon.
Day A, Sutula M, Dietz J, Raun A, Sukachev D, Bhaskar M Nat Commun. 2024; 15(1):4722.
PMID: 38830869 PMC: 11148098. DOI: 10.1038/s41467-024-48968-w.
Strain Modulation of Si Vacancy Emission from SiC Micro- and Nanoparticles.
Vasquez G, Bathen M, Galeckas A, Bazioti C, Johansen K, Maestre D Nano Lett. 2020; 20(12):8689-8695.
PMID: 33175553 PMC: 7735738. DOI: 10.1021/acs.nanolett.0c03472.
Morioka N, Babin C, Nagy R, Gediz I, Hesselmeier E, Liu D Nat Commun. 2020; 11(1):2516.
PMID: 32433556 PMC: 7239935. DOI: 10.1038/s41467-020-16330-5.