» Articles » PMID: 31774773

Highly Efficient Tunable Picosecond Deep Ultraviolet Laser System for Raman Spectroscopy

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2019 Nov 28
PMID 31774773
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

We present a narrowband laser system tunable from 219 to 236 nm for deep ultraviolet (DUV) Raman spectroscopy. The demonstrated laser system produces 6.7 ps nearly transform-limited pulses with energy up to 0.36 µJ at 100 kHz repetition rate. The system consists of a two-stage optical parametric amplifier (OPA) of a narrowband continuous wave diode laser and subsequent frequency conversion to the DUV radiation. We achieve more than 300 mW in the signal wave using ${{\rm LiB}_3}{{\rm O}_5}$LiBO (LBO) and ${{\rm BaB}_2}{{\rm O}_4}$BaBO (BBO) crystals, with the total 2.7 W pump after the two-stage OPA. We reach 12% conversion efficiency of the OPA signal wave into the DUV radiation using type-I phase matching in the BBO crystal. Finally, we demonstrate the applicability of the system for DUV Raman spectroscopy by collecting a high dynamic range, high spectral resolution spontaneous Raman spectrum of air.

Citing Articles

Biomedical optics applications of advanced lasers and nonlinear optics.

Marble C, Yakovlev V J Biomed Opt. 2020; 25(4):1-9.

PMID: 32329266 PMC: 7177183. DOI: 10.1117/1.JBO.25.4.040902.

References
1.
Nelson W, Dasari R, Feld M, Sperry J . Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light. Appl Spectrosc. 2004; 58(12):1408-12. DOI: 10.1366/0003702042641290. View

2.
Lednev I, Ermolenkov V, He W, Xu M . Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins. Anal Bioanal Chem. 2004; 381(2):431-7. DOI: 10.1007/s00216-004-2991-5. View

3.
Thompson J, Hokr B, Kim W, Ballmann C, Applegate B, Jo J . Enhanced coupling of light into a turbid medium through microscopic interface engineering. Proc Natl Acad Sci U S A. 2017; 114(30):7941-7946. PMC: 5544321. DOI: 10.1073/pnas.1705612114. View

4.
Bixler J, Cone M, Hokr B, Mason J, Figueroa E, Fry E . Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy. Proc Natl Acad Sci U S A. 2014; 111(20):7208-11. PMC: 4034222. DOI: 10.1073/pnas.1403175111. View

5.
Asher S, Johnson C . Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science. 1984; 225(4659):311-3. DOI: 10.1126/science.6740313. View