» Articles » PMID: 31772174

Orbitally Dominated Rashba-Edelstein Effect in Noncentrosymmetric Antiferromagnets

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Nov 28
PMID 31772174
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient manipulation of magnetic order with electric current pulses is desirable for achieving fast spintronic devices. The Rashba-Edelstein effect, wherein spin polarization is electrically induced in noncentrosymmetric systems, provides a mean to achieve staggered spin-orbit torques. Initially predicted for spin, its orbital counterpart has been disregarded up to now. Here we report a generalized Rashba-Edelstein effect, which generates not only spin polarization but also orbital polarization, which we find to be far from being negligible. We show that the orbital Rashba-Edelstein effect does not require spin-orbit coupling to exist. We present first-principles calculations of the frequency-dependent spin and orbital Rashba-Edelstein tensors for the noncentrosymmetric antiferromagnets CuMnAs and Mn[Formula: see text]Au. We show that the electrically induced local magnetization can exhibit Rashba-like or Dresselhaus-like symmetries, depending on the magnetic configuration. We compute sizable induced magnetizations at optical frequencies, which suggest that electric-field driven switching could be achieved at much higher frequencies.

Citing Articles

Nonreciprocity in Magnon Mediated Charge-Spin-Orbital Current Interconversion.

Ledesma-Martin J, Galindez-Ruales E, Krishnia S, Fuhrmann F, Tran M, Gupta R Nano Lett. 2025; 25(8):3247-3252.

PMID: 39953375 PMC: 11869360. DOI: 10.1021/acs.nanolett.4c06056.


Large Chiral Orbital Texture and Orbital Edelstein Effect in Co/Al Heterostructure.

Nikolaev S, Chshiev M, Ibrahim F, Krishnia S, Sebe N, George J Nano Lett. 2024; 24(43):13465-13472.

PMID: 39433297 PMC: 11528436. DOI: 10.1021/acs.nanolett.4c01607.


Signatures of magnetism control by flow of angular momentum.

Chen L, Sun Y, Mankovsky S, Meier T, Kronseder M, Sun C Nature. 2024; 633(8030):548-553.

PMID: 39232172 PMC: 11410660. DOI: 10.1038/s41586-024-07914-y.


Terahertz oscillation driven by optical spin-orbit torque.

Huang L, Cao Y, Qiu H, Bai H, Liao L, Chen C Nat Commun. 2024; 15(1):7227.

PMID: 39174538 PMC: 11341728. DOI: 10.1038/s41467-024-51440-4.


Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals.

Yang Q, Xiao J, Robredo I, Vergniory M, Yan B, Felser C Proc Natl Acad Sci U S A. 2023; 120(48):e2305541120.

PMID: 37983495 PMC: 10691347. DOI: 10.1073/pnas.2305541120.


References
1.
Jungwirth T, Marti X, Wadley P, Wunderlich J . Antiferromagnetic spintronics. Nat Nanotechnol. 2016; 11(3):231-41. DOI: 10.1038/nnano.2016.18. View

2.
Liu L, Pai C, Li Y, Tseng H, Ralph D, Buhrman R . Spin-torque switching with the giant spin Hall effect of tantalum. Science. 2012; 336(6081):555-8. DOI: 10.1126/science.1218197. View

3.
Olejnik K, Seifert T, Kaspar Z, Novak V, Wadley P, Campion R . Terahertz electrical writing speed in an antiferromagnetic memory. Sci Adv. 2018; 4(3):eaar3566. PMC: 5938222. DOI: 10.1126/sciadv.aar3566. View

4.
Wadley P, Reimers S, Grzybowski M, Andrews C, Wang M, Chauhan J . Current polarity-dependent manipulation of antiferromagnetic domains. Nat Nanotechnol. 2018; 13(5):362-365. DOI: 10.1038/s41565-018-0079-1. View

5.
Kim T, Gruenberg P, Han S, Cho B . Field-driven dynamics and time-resolved measurement of Dzyaloshinskii-Moriya torque in canted antiferromagnet YFeO. Sci Rep. 2017; 7(1):4515. PMC: 5495818. DOI: 10.1038/s41598-017-04883-3. View