» Articles » PMID: 31763449

Minimized Lithium Trapping by Isovalent Isomorphism for High Initial Coulombic Efficiency of Silicon Anodes

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2019 Nov 26
PMID 31763449
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Silicon demonstrates great potential as a next-generation lithium ion battery anode because of high capacity and elemental abundance. However, the issue of low initial Coulombic efficiency needs to be addressed to enable large-scale applications. There are mainly two mechanisms for this lithium loss in the first cycle: the formation of the solid electrolyte interphase and lithium trapping in the electrode. The former has been heavily investigated while the latter has been largely neglected. Here, through both theoretical calculation and experimental study, we demonstrate that by introducing Ge substitution in Si with fine compositional control, the energy barrier of lithium diffusion will be greatly reduced because of the lattice expansion. This effect of isovalent isomorphism significantly reduces the Li trapping by ~70% and improves the initial Coulombic efficiency to over 90%. We expect that various systems of battery materials can benefit from this mechanism for fine-tuning their electrochemical behaviors.

Citing Articles

Low-Cost Silicon from Natural Sand with Tunable Oxygen Content and Its Effects on the Electrochemical Properties of Lithium-Ion Battery Anodes.

Lin Z, Sun P, Zhou C, Fang Z ACS Omega. 2025; 10(1):473-483.

PMID: 39829600 PMC: 11739965. DOI: 10.1021/acsomega.4c06828.


Comprehensive Study of Lithium Diffusion in Si/C-Layer and Si/CN Composites in a Faceted Crystalline Silicon Anode for Fast-Charging Lithium-Ion Batteries.

Lashani Zand A, Niksirat A, Sanaee Z, Pourfath M ACS Omega. 2023; 8(47):44698-44707.

PMID: 38046306 PMC: 10688109. DOI: 10.1021/acsomega.3c05523.


Chemical stress in a largely deformed electrode: Effects of trapping lithium.

Li Y, Huang H, Zhang K, Hou M, Yang F iScience. 2023; 26(11):108174.

PMID: 37942011 PMC: 10628738. DOI: 10.1016/j.isci.2023.108174.


High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation.

Gao Y, Fan L, Zhou R, Du X, Jiao Z, Zhang B Nanomicro Lett. 2023; 15(1):222.

PMID: 37812292 PMC: 10562352. DOI: 10.1007/s40820-023-01190-7.


Constructing Pure Si Anodes for Advanced Lithium Batteries.

Je M, Han D, Ryu J, Park S Acc Chem Res. 2023; 56(16):2213-2224.

PMID: 37527443 PMC: 10433510. DOI: 10.1021/acs.accounts.3c00308.


References
1.
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G . High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater. 2010; 9(4):353-8. DOI: 10.1038/nmat2725. View

2.
Michan A, Divitini G, Pell A, Leskes M, Ducati C, Grey C . Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes. J Am Chem Soc. 2016; 138(25):7918-31. DOI: 10.1021/jacs.6b02882. View

3.
Ge M, Rong J, Fang X, Zhou C . Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012; 12(5):2318-23. DOI: 10.1021/nl300206e. View

4.
Liu X, Zhong L, Huang S, Mao S, Zhu T, Huang J . Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012; 6(2):1522-31. DOI: 10.1021/nn204476h. View

5.
Liu N, Lu Z, Zhao J, McDowell M, Lee H, Zhao W . A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014; 9(3):187-92. DOI: 10.1038/nnano.2014.6. View