» Articles » PMID: 31748630

Numerical Modelling of the Effects of Cold Atmospheric Plasma on Mitochondrial Redox Homeostasis and Energy Metabolism

Overview
Journal Sci Rep
Specialty Science
Date 2019 Nov 22
PMID 31748630
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

A biochemical reaction model clarifies for the first time how cold atmospheric plasmas (CAPs) affect mitochondrial redox homeostasis and energy metabolism. Fundamental mitochondrial functions in pyruvic acid oxidation, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation involving the respiratory chain (RC), adenosine triphosphate/adenosine diphosphate (ATP/ADP) synthesis machinery and reactive oxygen species/reactive nitrogen species (ROS/RNS)-mediated mechanisms are numerically simulated. The effects of CAP irradiation are modelled as 1) the influx of hydrogen peroxide (H[Formula: see text]O[Formula: see text]) to an ROS regulation system and 2) the change in mitochondrial transmembrane potential induced by RNS on membrane permeability. The CAP-induced stress modifies the dynamics of intramitochondrial H[Formula: see text]O[Formula: see text] and superoxide anions, i.e., the rhythm and shape of ROS oscillation are disturbed by H[Formula: see text]O[Formula: see text] infusion. Furthermore, CAPs control the ROS oscillatory behaviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through the reaction mixture over the RC, the TCA cycle and ROS regulation system. CAPs even induce a homeostatic or irreversible state transition in cell metabolism. The present computational model demonstrates that CAPs crucially affect essential mitochondrial functions, which in turn affect redox signalling, metabolic cooporation and cell fate decision of survival or death.

Citing Articles

Unleashing the Power of Cold Atmospheric Plasma: Inducing Mitochondria Damage-Mediated Mitotic Catastrophe.

Peng S, Feng Y, Yu K, Wu L, Chen G, Yang M Adv Sci (Weinh). 2024; 11(46):e2401842.

PMID: 39440523 PMC: 11633534. DOI: 10.1002/advs.202401842.


Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities.

Hu M, He F, Thompson E, Ostrikov K, Dai X Cancers (Basel). 2022; 14(2).

PMID: 35053509 PMC: 8773583. DOI: 10.3390/cancers14020346.


Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells.

Motaln H, Recek N, Rogelj B Molecules. 2021; 26(5).

PMID: 33801451 PMC: 7958621. DOI: 10.3390/molecules26051336.


Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology.

Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z Int J Mol Sci. 2020; 21(21).

PMID: 33121141 PMC: 7663780. DOI: 10.3390/ijms21217988.

References
1.
Lackmann J, Wende K, Verlackt C, Golda J, Volzke J, Kogelheide F . Chemical fingerprints of cold physical plasmas - an experimental and computational study using cysteine as tracer compound. Sci Rep. 2018; 8(1):7736. PMC: 5955931. DOI: 10.1038/s41598-018-25937-0. View

2.
Goldbeter A . Computational approaches to cellular rhythms. Nature. 2002; 420(6912):238-45. DOI: 10.1038/nature01259. View

3.
Grivennikova V, Vinogradov A . Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim Biophys Acta. 2013; 1827(3):446-54. DOI: 10.1016/j.bbabio.2013.01.002. View

4.
Antunes F, Brito P . Quantitative biology of hydrogen peroxide signaling. Redox Biol. 2017; 13:1-7. PMC: 5436100. DOI: 10.1016/j.redox.2017.04.039. View

5.
Duchen M . Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004; 25(4):365-451. DOI: 10.1016/j.mam.2004.03.001. View