» Articles » PMID: 31707052

Nanotechnology in Regenerative Ophthalmology

Overview
Specialty Pharmacology
Date 2019 Nov 11
PMID 31707052
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.

Citing Articles

Tissue engineering strategies for ocular regeneration; from bench to the bedside.

Mousavi Z, Bagheri M, Rostaminasab G, Mikaeili A, Djalilian A, Rezakhani L Heliyon. 2024; 10(20):e39398.

PMID: 39497964 PMC: 11532841. DOI: 10.1016/j.heliyon.2024.e39398.


Revolutionizing medicine: recent developments and future prospects in stem-cell therapy.

Hussen B, Hussen B, Taheri M, Yashooa R, Abdullah G, Abdullah S Int J Surg. 2024; 110(12):8002-8024.

PMID: 39497543 PMC: 11634165. DOI: 10.1097/JS9.0000000000002109.


Regeneration of the Retina Using Pluripotent Stem Cells: A Comprehensive Review.

Lath Y, Thool A, Jadhav I Cureus. 2024; 16(2):e53479.

PMID: 38440034 PMC: 10910172. DOI: 10.7759/cureus.53479.


Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives.

Guidi L, Cascone M, Rosellini E Heliyon. 2024; 10(5):e26616.

PMID: 38434257 PMC: 10906429. DOI: 10.1016/j.heliyon.2024.e26616.


The Role of Retinal Ganglion Cell Structure and Function in Glaucoma.

Feng K, Tsung T, Chen Y, Lu D Cells. 2023; 12(24).

PMID: 38132117 PMC: 10741833. DOI: 10.3390/cells12242797.


References
1.
Liu Y, Wang J, Luo Y, Chen S, Lewallen M, Xie T . Stem Cells and Ocular Tissue Regeneration. Asia Pac J Ophthalmol (Phila). 2015; 2(2):111-8. DOI: 10.1097/APO.0b013e31828615b7. View

2.
Daliri K, Ljubimov A, Hekmatimoghaddam S . Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now?. Int J Stem Cells. 2017; 10(2):119-128. PMC: 5741193. DOI: 10.15283/ijsc17029. View

3.
Vanguilder H, Brucklacher R, Patel K, Ellis R, Freeman W, Barber A . Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci. 2008; 28(1):1-11. DOI: 10.1111/j.1460-9568.2008.06322.x. View

4.
Gong N, Pleyer U, Vogt K, Anegon I, Flugel A, Volk H . Local overexpression of nerve growth factor in rat corneal transplants improves allograft survival. Invest Ophthalmol Vis Sci. 2007; 48(3):1043-52. DOI: 10.1167/iovs.06-1084. View

5.
Jones R, Castelletto V, Connon C, Hamley I . Collagen stimulating effect of peptide amphiphile C16-KTTKS on human fibroblasts. Mol Pharm. 2013; 10(3):1063-9. DOI: 10.1021/mp300549d. View