» Articles » PMID: 31687006

Advances in Hybrid Brain-Computer Interfaces: Principles, Design, and Applications

Overview
Specialty Biology
Date 2019 Nov 6
PMID 31687006
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Conventional brain-computer interface (BCI) systems have been facing two fundamental challenges: the lack of high detection performance and the control command problem. To this end, the researchers have proposed a hybrid brain-computer interface (hBCI) to address these challenges. This paper mainly discusses the research progress of hBCI and reviews three types of hBCI, namely, hBCI based on multiple brain models, multisensory hBCI, and hBCI based on multimodal signals. By analyzing the general principles, paradigm designs, experimental results, advantages, and applications of the latest hBCI system, we found that using hBCI technology can improve the detection performance of BCI and achieve multidegree/multifunctional control, which is significantly superior to single-mode BCIs.

Citing Articles

A motor imagery classification model based on hybrid brain-computer interface and multitask learning of electroencephalographic and electromyographic deep features.

Cao Y, Gao S, Yu H, Zhao Z, Zang D, Wang C Front Physiol. 2024; 15:1487809.

PMID: 39703669 PMC: 11655504. DOI: 10.3389/fphys.2024.1487809.


Evolving Therapeutic Landscape of Intracerebral Hemorrhage: Emerging Cutting-Edge Advancements in Surgical Robots, Regenerative Medicine, and Neurorehabilitation Techniques.

Chen D, Zhao Z, Zhang S, Chen S, Wu X, Shi J Transl Stroke Res. 2024; .

PMID: 38558011 DOI: 10.1007/s12975-024-01244-x.


Brain-computer interface paradigms and neural coding.

Tai P, Ding P, Wang F, Gong A, Li T, Zhao L Front Neurosci. 2024; 17:1345961.

PMID: 38287988 PMC: 10822902. DOI: 10.3389/fnins.2023.1345961.


Hybrid Systems to Boost EEG-Based Real-Time Action Decoding in Car Driving Scenarios.

Vecchiato G Front Neuroergon. 2024; 2:784827.

PMID: 38235223 PMC: 10790909. DOI: 10.3389/fnrgo.2021.784827.


EEG Amplitude Modulation Analysis across Mental Tasks: Towards Improved Active BCIs.

Rosanne O, Alves de Oliveira A, Falk T Sensors (Basel). 2023; 23(23).

PMID: 38067725 PMC: 10708818. DOI: 10.3390/s23239352.


References
1.
Chiarelli A, Croce P, Merla A, Zappasodi F . Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification. J Neural Eng. 2018; 15(3):036028. DOI: 10.1088/1741-2552/aaaf82. View

2.
Halme H, Parkkonen L . Across-subject offline decoding of motor imagery from MEG and EEG. Sci Rep. 2018; 8(1):10087. PMC: 6031658. DOI: 10.1038/s41598-018-28295-z. View

3.
Khan M, Hong M, Hong K . Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci. 2014; 8:244. PMC: 4009438. DOI: 10.3389/fnhum.2014.00244. View

4.
Shin J, von Luhmann A, Blankertz B, Kim D, Jeong J, Hwang H . Open Access Dataset for EEG+NIRS Single-Trial Classification. IEEE Trans Neural Syst Rehabil Eng. 2016; 25(10):1735-1745. DOI: 10.1109/TNSRE.2016.2628057. View

5.
Long J, Li Y, Wang H, Yu T, Pan J, Li F . A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng. 2012; 20(5):720-9. DOI: 10.1109/TNSRE.2012.2197221. View