» Articles » PMID: 31664112

Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation

Overview
Journal Sci Rep
Specialty Science
Date 2019 Oct 31
PMID 31664112
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Biosample encapsulation is a critical step in a wide range of biomedical and bioengineering applications. Aqueous two-phase system (ATPS) droplets have been recently introduced and showed a great promise to the biological separation and encapsulation due to their excellent biocompatibility. This study shows for the first time the passive generation of salt-based ATPS microdroplets and their biocompatibility test. We used two ATPS including polymer/polymer (polyethylene glycol (PEG)/dextran (DEX)) and polymer/salt (PEG/Magnesium sulfate) for droplet generation in a flow-focusing geometry. Droplet morphologies and monodispersity in both systems are studied. The PEG/salt system showed an excellent capability of uniform droplet formation with a wide range of sizes (20-60 μm) which makes it a suitable candidate for encapsulation of biological samples. Therefore, we examined the potential application of the PEG/salt system for encapsulating human umbilical vein endothelial cells (HUVECs). A cell viability test was conducted on MgSO solutions at various concentrations and our results showed an adequate cell survival. The findings of this research suggest that the polymer/salt ATPS could be a biocompatible all-aqueous platform for cell encapsulation.

Citing Articles

Advancements in Aqueous Two-Phase Systems for Enzyme Extraction, Purification, and Biotransformation.

Bekavac N, Benkovic M, Jurina T, Valinger D, Gajdos Kljusuric J, Jurinjak Tusek A Molecules. 2024; 29(16).

PMID: 39202854 PMC: 11357509. DOI: 10.3390/molecules29163776.


Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions.

Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S Commun Chem. 2024; 7(1):79.

PMID: 38594355 PMC: 11004187. DOI: 10.1038/s42004-024-01168-5.


.

Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H Acta Pharm Sin B. 2024; 14(1):110-132.

PMID: 38239237 PMC: 10792979. DOI: 10.1016/j.apsb.2023.08.024.


Biomolecular Liquid-Liquid Phase Separation for Biotechnology.

Shil S, Tsuruta M, Kawauchi K, Miyoshi D BioTech (Basel). 2023; 12(2).

PMID: 37092470 PMC: 10123627. DOI: 10.3390/biotech12020026.


Direct imaging of micrometer-thick interfaces in salt-salt aqueous biphasic systems.

Degoulange D, Pandya R, Deschamps M, Skiba D, Gallant B, Gigan S Proc Natl Acad Sci U S A. 2023; 120(17):e2220662120.

PMID: 37068232 PMC: 10151592. DOI: 10.1073/pnas.2220662120.


References
1.
Duncanson W, Lin T, Abate A, Seiffert S, Shah R, Weitz D . Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip. 2012; 12(12):2135-45. DOI: 10.1039/c2lc21164e. View

2.
Shang L, Cheng Y, Zhao Y . Emerging Droplet Microfluidics. Chem Rev. 2017; 117(12):7964-8040. DOI: 10.1021/acs.chemrev.6b00848. View

3.
Shestopalov I, Tice J, Ismagilov R . Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip. 2004; 4(4):316-21. DOI: 10.1039/b403378g. View

4.
Geschiere S, Ziemecka I, Steijn V, Koper G, van Esch J, Kreutzer M . Slow growth of the Rayleigh-Plateau instability in aqueous two phase systems. Biomicrofluidics. 2012; 6(2):22007-2200711. PMC: 3331863. DOI: 10.1063/1.3700117. View

5.
Belder D . Microfluidics with droplets. Angew Chem Int Ed Engl. 2005; 44(23):3521-2. DOI: 10.1002/anie.200500620. View