» Articles » PMID: 31656635

Inorganic Semiconductor Biointerfaces

Overview
Journal Nat Rev Mater
Date 2019 Oct 29
PMID 31656635
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Biological systems respond to and communicate through biophysical cues, such as electrical, thermal, mechanical and topographical signals. However, precise tools for introducing localized physical stimuli and/or for sensing biological responses to biophysical signals with high spatiotemporal resolution are limited. Inorganic semiconductors display many relevant electrical and optical properties, and they can be fabricated into a broad spectrum of electronic and photonic devices. Inorganic semiconductor devices enable the formation of functional interfaces with biological material, ranging from proteins to whole organs. In this Review, we discuss fundamental semiconductor physics and operation principles, with a focus on their behaviour in physiological conditions, and highlight the advantages of inorganic semiconductors for the establishment of biointerfaces. We examine semiconductor device design and synthesis and discuss typical signal transduction mechanisms at bioelectronic and biophotonic interfaces for electronic and optoelectronic sensing, optoelectronic and photothermal stimulation and photoluminescent in vivo imaging of cells and tissues. Finally, we evaluate cytotoxicity and highlight possible new material components and biological targets of inorganic semiconductor devices.

Citing Articles

Ultra-fast photoelectron transfer in bimetallic porphyrin optoelectrode for single neuron modulation.

Chen J, Chen F, Wang X, Zhuang H, Guo M, Wang L Nat Commun. 2024; 15(1):10241.

PMID: 39592569 PMC: 11599743. DOI: 10.1038/s41467-024-54325-8.


Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation.

Wang Z, Tan C, Peng M, Yu Y, Zhong F, Wang P Light Sci Appl. 2024; 13(1):277.

PMID: 39327457 PMC: 11427709. DOI: 10.1038/s41377-024-01640-w.


Neural modulation with photothermally active nanomaterials.

Wang Y, Garg R, Cohen-Karni D, Cohen-Karni T Nat Rev Bioeng. 2024; 1(3):193-207.

PMID: 39221032 PMC: 11364367. DOI: 10.1038/s44222-023-00022-y.


Beyond 25 years of biomedical innovation in nano-bioelectronics.

Li P, Kim S, Tian B Device. 2024; 2(7).

PMID: 39119268 PMC: 11308927. DOI: 10.1016/j.device.2024.100401.


Impact of the Reduction Time-Dependent Electrical Conductivity of Graphene Nanoplatelet-Coated Aligned Silk Scaffolds on Electrically Stimulated Axonal Growth.

Das J, Upadhyay J, Monaghan M, Borah R ACS Appl Bio Mater. 2024; 7(4):2389-2401.

PMID: 38502100 PMC: 11022174. DOI: 10.1021/acsabm.4c00052.


References
1.
Fang Y, Jiang Y, Cherukara M, Shi F, Koehler K, Freyermuth G . Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nat Commun. 2017; 8(1):2014. PMC: 5722855. DOI: 10.1038/s41467-017-02025-x. View

2.
Rivnay J, Inal S, Collins B, Sessolo M, Stavrinidou E, Strakosas X . Structural control of mixed ionic and electronic transport in conducting polymers. Nat Commun. 2016; 7:11287. PMC: 4838877. DOI: 10.1038/ncomms11287. View

3.
Parker S, Yang Y, Ciampi S, Gupta B, Kimpton K, Mansfeld F . A photoelectrochemical platform for the capture and release of rare single cells. Nat Commun. 2018; 9(1):2288. PMC: 5997639. DOI: 10.1038/s41467-018-04701-y. View

4.
Luo Z, Jiang Y, Myers B, Isheim D, Wu J, Zimmerman J . 3D LITHOGRAPHY. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science. 2015; 348(6242):1451-5. DOI: 10.1126/science.1257278. View

5.
Orosco M, Pacholski C, Sailor M . Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol. 2009; 4(4):255-8. PMC: 2736600. DOI: 10.1038/nnano.2009.11. View