» Articles » PMID: 31649920

The Supramolecular Chemistry of Cycloparaphenylenes and Their Analogs

Overview
Journal Front Chem
Specialty Chemistry
Date 2019 Oct 26
PMID 31649920
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Cycloparaphenylenes (CPPs) and their analogs have recently attracted much attention due to their aesthetical structures and optoelectronic properties with radial π-conjugation systems. The past 10 years have witnessed a remarkable advancement in CPPs research, from synthetic methodology to optoelectronic investigations. In this present minireview, we highlight the supramolecular chemistry of CPPs and their analogs, mainly focusing on the size-selective encapsulation of fullerenes, endohedral metallofullerenes, and small molecules by these hoop-shaped macrocycles. We will also discuss the assembly of molecular bearings using some belt-persistent tubular cycloarylene molecules and fullerenes, photoinduced electron transfer properties in supramolecular systems containing carbon nanohoop hosts and fullerene guests, as well as the shape recognition properties for structure self-sorting by using dumbbell-shaped dimer of [60]fullerene ligand. Besides, the supramolecular complexes with guest molecules other than fullerenes, such as CPPs themselves, iodine, pyridinium cations, and bowl-shaped corannulene, are also discussed.

Citing Articles

Acceptor engineering of quinone-based cycloparaphenylenes via post-synthesis for achieving white-light emission in single-molecule.

Li X, Liu L, Jia L, Lian Z, He J, Guo S Nat Commun. 2025; 16(1):467.

PMID: 39775102 PMC: 11707345. DOI: 10.1038/s41467-025-55895-x.


A Cycloparaphenylene Acetylene as Potential Precursor for an Armchair Carbon Nanotube.

Sidler E, Rothlisberger R, Mayor M Chemistry. 2024; 30(69):e202403084.

PMID: 39325698 PMC: 11632400. DOI: 10.1002/chem.202403084.


Nanohoops Favour Light-Induced Energy Transfer over Charge Separation in Porphyrin/[10]CPP/Fullerene Rotaxanes.

Schwer F, Zank S, Freiberger M, Steudel F, Geue N, Ye L Angew Chem Int Ed Engl. 2024; 64(1):e202413404.

PMID: 39313478 PMC: 11701370. DOI: 10.1002/anie.202413404.


Carbon Nanomaterial Fluorescent Probes and Their Biological Applications.

Krasley A, Li E, Galeana J, Bulumulla C, Beyene A, Demirer G Chem Rev. 2024; 124(6):3085-3185.

PMID: 38478064 PMC: 10979413. DOI: 10.1021/acs.chemrev.3c00581.


Monitoring Hierarchical Assembly of Ring-in-Ring and Russian Doll Complexes Based on Carbon Nanoring by Förster Resonance Energy Transfer.

Guo S, Liu L, Su F, Yang H, Liu G, Fan Y JACS Au. 2024; 4(2):402-410.

PMID: 38425918 PMC: 10900207. DOI: 10.1021/jacsau.3c00720.


References
1.
Lu D, Zhuang G, Wu H, Wang S, Yang S, Du P . A Large π-Extended Carbon Nanoring Based on Nanographene Units: Bottom-Up Synthesis, Photophysical Properties, and Selective Complexation with Fullerene C. Angew Chem Int Ed Engl. 2016; 56(1):158-162. DOI: 10.1002/anie.201608963. View

2.
Zabula A, Filatov A, Xia J, Jasti R, Petrukhina M . Tightening of the nanobelt upon multielectron reduction. Angew Chem Int Ed Engl. 2013; 52(19):5033-6. DOI: 10.1002/anie.201301226. View

3.
Fomine S, Zolotukhin M, Guadarrama P . "Russian doll" complexes of [n]cycloparaphenylenes: a theoretical study. J Mol Model. 2012; 18(9):4025-32. DOI: 10.1007/s00894-012-1402-7. View

4.
Sun Z, Mio T, Okada T, Matsuno T, Sato S, Kono H . Unbiased Rotational Motions of an Ellipsoidal Guest in a Tight Yet Pliable Host. Angew Chem Int Ed Engl. 2018; 58(7):2040-2044. DOI: 10.1002/anie.201812771. View

5.
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K . Synthesis of a carbon nanobelt. Science. 2017; 356(6334):172-175. DOI: 10.1126/science.aam8158. View