» Articles » PMID: 31649240

Ultrafast Growth of Nanocrystalline Graphene Films by Quenching and Grain-size-dependent Strength and Bandgap Opening

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Oct 26
PMID 31649240
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Nanocrystallization is a well-known strategy to dramatically tune the properties of materials; however, the grain-size effect of graphene at the nanometer scale remains unknown experimentally because of the lack of nanocrystalline samples. Here we report an ultrafast growth of graphene films within a few seconds by quenching a hot metal foil in liquid carbon source. Using Pt foil and ethanol as examples, four kinds of nanocrystalline graphene films with average grain size of ~3.6, 5.8, 8.0, and 10.3 nm are synthesized. It is found that the effect of grain boundary becomes more pronounced at the nanometer scale. In comparison with pristine graphene, the 3.6 nm-grained film retains high strength (101 GPa) and Young's modulus (576 GPa), whereas the electrical conductivity is declined by over 100 times, showing semiconducting behavior with a bandgap of ~50 meV. This liquid-phase precursor quenching method opens possibilities for ultrafast synthesis of typical graphene materials and other two-dimensional nanocrystalline materials.

Citing Articles

On the mechanism of piezoresistance in nanocrystalline graphite.

Kumar S, Dehm S, Krupke R Beilstein J Nanotechnol. 2024; 15:376-384.

PMID: 38633765 PMC: 11022366. DOI: 10.3762/bjnano.15.34.


Nanoporous Amorphous Carbon Monolayer Derived from Fullerene Film.

He M, Ding Y, Liu X Adv Sci (Weinh). 2023; 11(10):e2308187.

PMID: 38155485 PMC: 10933613. DOI: 10.1002/advs.202308187.


Defects boost graphitization for highly conductive graphene films.

Zhang Q, Wei Q, Huang K, Liu Z, Ma W, Zhang Z Natl Sci Rev. 2023; 10(7):nwad147.

PMID: 37416318 PMC: 10319761. DOI: 10.1093/nsr/nwad147.


Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes.

Izquierdo-Garcia P, Fernandez-Garcia J, Perles J, Fernandez I, Martin N Angew Chem Int Ed Engl. 2022; 62(7):e202215655.

PMID: 36495528 PMC: 10107473. DOI: 10.1002/anie.202215655.


Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis.

Lu B, Liu Q, Wang C, Masood Z, Morris D, Nichols F Research (Wash D C). 2022; 2022:9756983.

PMID: 35707048 PMC: 9185434. DOI: 10.34133/2022/9756983.


References
1.
Lee G, Cooper R, An S, Lee S, van der Zande A, Petrone N . High-strength chemical-vapor-deposited graphene and grain boundaries. Science. 2013; 340(6136):1073-6. DOI: 10.1126/science.1235126. View

2.
Cummings A, Duong D, Nguyen V, Van Tuan D, Kotakoski J, Barrios Vargas J . Charge transport in polycrystalline graphene: challenges and opportunities. Adv Mater. 2014; 26(30):5079-94. DOI: 10.1002/adma.201401389. View

3.
Turchanin A, Weber D, Buenfeld M, Kisielowski C, Fistul M, Efetov K . Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. ACS Nano. 2011; 5(5):3896-904. DOI: 10.1021/nn200297n. View

4.
Zhang Z, Ge B, Guo Y, Tang D, Wang X, Wang F . Catalyst-free growth of nanocrystalline graphene/graphite patterns from photoresist. Chem Commun (Camb). 2013; 49(27):2789-91. DOI: 10.1039/c3cc00089c. View

5.
Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T . Fine structure constant defines visual transparency of graphene. Science. 2008; 320(5881):1308. DOI: 10.1126/science.1156965. View