» Articles » PMID: 31642487

AraPheno and the AraGWAS Catalog 2020: a Major Database Update Including RNA-Seq and Knockout Mutation Data for Arabidopsis Thaliana

Overview
Specialty Biochemistry
Date 2019 Oct 24
PMID 31642487
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Genome-wide association studies (GWAS) are integral for studying genotype-phenotype relationships and gaining a deeper understanding of the genetic architecture underlying trait variation. A plethora of genetic associations between distinct loci and various traits have been successfully discovered and published for the model plant Arabidopsis thaliana. This success and the free availability of full genomes and phenotypic data for more than 1,000 different natural inbred lines led to the development of several data repositories. AraPheno (https://arapheno.1001genomes.org) serves as a central repository of population-scale phenotypes in A. thaliana, while the AraGWAS Catalog (https://aragwas.1001genomes.org) provides a publicly available, manually curated and standardized collection of marker-trait associations for all available phenotypes from AraPheno. In this major update, we introduce the next generation of both platforms, including new data, features and tools. We included novel results on associations between knockout-mutations and all AraPheno traits. Furthermore, AraPheno has been extended to display RNA-Seq data for hundreds of accessions, providing expression information for over 28 000 genes for these accessions. All data, including the imputed genotype matrix used for GWAS, are easily downloadable via the respective databases.

Citing Articles

Reducing herbivory in mixed planting by genomic prediction of neighbor effects in the field.

Sato Y, Shimizu-Inatsugi R, Takeda K, Schmid B, Nagano A, Shimizu K Nat Commun. 2024; 15(1):8467.

PMID: 39375389 PMC: 11458863. DOI: 10.1038/s41467-024-52374-7.


The benefits of permutation-based genome-wide association studies.

John M, Korte A, Grimm D J Exp Bot. 2024; 75(17):5377-5389.

PMID: 38954539 PMC: 11389838. DOI: 10.1093/jxb/erae280.


Biologically meaningful genome interpretation models to address data underdetermination for the leaf and seed ionome prediction in Arabidopsis thaliana.

Raimondi D, Passemiers A, Verplaetse N, Corso M, Ferrero-Serrano A, Nazzicari N Sci Rep. 2024; 14(1):13188.

PMID: 38851759 PMC: 11162433. DOI: 10.1038/s41598-024-63855-6.


PlantFUNCO: Integrative Functional Genomics Database Reveals Clues into Duplicates Divergence Evolution.

Roces V, Guerrero S, Alvarez A, Pascual J, Meijon M Mol Biol Evol. 2024; 41(3).

PMID: 38411627 PMC: 10917205. DOI: 10.1093/molbev/msae042.


Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences.

Deng C, Naithani S, Kumari S, Cobo-Simon I, Quezada-Rodriguez E, Skrabisova M Database (Oxford). 2023; 2023.

PMID: 38079567 PMC: 10712715. DOI: 10.1093/database/baad088.


References
1.
. 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell. 2016; 166(2):481-491. PMC: 4949382. DOI: 10.1016/j.cell.2016.05.063. View

2.
Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C . Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000; 290(5490):344-7. DOI: 10.1126/science.290.5490.344. View

3.
Seren U, Grimm D, Fitz J, Weigel D, Nordborg M, Borgwardt K . AraPheno: a public database for Arabidopsis thaliana phenotypes. Nucleic Acids Res. 2016; 45(D1):D1054-D1059. PMC: 5210660. DOI: 10.1093/nar/gkw986. View

4.
Watanabe K, Stringer S, Frei O, Mirkov M, de Leeuw C, Polderman T . A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019; 51(9):1339-1348. DOI: 10.1038/s41588-019-0481-0. View

5.
Monroe J, Powell T, Price N, Mullen J, Howard A, Evans K . Drought adaptation in by extensive genetic loss-of-function. Elife. 2018; 7. PMC: 6326724. DOI: 10.7554/eLife.41038. View