» Articles » PMID: 31636260

Ultrahigh Resolution and Color Gamut with Scattering-reducing Transmissive Pixels

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Oct 23
PMID 31636260
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

While plasmonic designs have dominated recent trends in structural color, schemes using localized surface plasmon resonances and surface plasmon polaritons that simultaneously achieve high color vibrancy at ultrahigh resolution have been elusive because of tradeoffs between size and performance. Herein we demonstrate vibrant and size-invariant transmissive type multicolor pixels composed of hybrid TiO-Ag core-shell nanowires based on reduced scattering at their electric dipolar Mie resonances. This principle permits the hybrid nanoresonator to achieve the widest color gamut (~74% sRGB area coverage), linear color mixing, and the highest reported single color dots-per-inch (58,000~141,000) in transmission mode. Exploiting such features, we further show that an assembly of distinct nanoresonators can constitute a multicolor pixel for use in multispectral imaging, with a size that is ~10-folds below the Nyquist limit using a typical high NA objective lens.

Citing Articles

Encoding Mie, plasmonic, and diffractive structural colors in the same pixel.

Kim Y, Hyun J Nanophotonics. 2024; 12(16):3341-3349.

PMID: 39634150 PMC: 11501730. DOI: 10.1515/nanoph-2023-0254.


Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection.

Meng H, Gao Y, Wang X, Li X, Wang L, Zhao X Light Sci Appl. 2024; 13(1):121.

PMID: 38802359 PMC: 11130170. DOI: 10.1038/s41377-024-01476-4.


Schrödinger's Red Beyond 65,000 Pixel-Per-Inch by Multipolar Interaction in Freeform Meta-Atom through Efficient Neural Optimizer.

Lin R, Valuckas V, Do T, Nemati A, Kuznetsov A, Teng J Adv Sci (Weinh). 2023; 11(13):e2303929.

PMID: 38093513 PMC: 10987134. DOI: 10.1002/advs.202303929.


Inverse-Designed Metaphotonics for Hypersensitive Detection.

Elizarov M, Kivshar Y, Fratalocchi A ACS Nanosci Au. 2023; 2(5):422-432.

PMID: 37102133 PMC: 10125296. DOI: 10.1021/acsnanoscienceau.2c00009.


Facile full-color printing with a single transparent ink.

Li K, Li T, Zhang T, Li H, Li A, Li Z Sci Adv. 2021; 7(39):eabh1992.

PMID: 34550746 PMC: 8457659. DOI: 10.1126/sciadv.abh1992.

References
1.
Miyata M, Hatada H, Takahara J . Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. Nano Lett. 2016; 16(5):3166-72. DOI: 10.1021/acs.nanolett.6b00500. View

2.
Clark A, Cooper J . Plasmon shaping by using protein nanoarrays and molecular lithography to engineer structural color. Angew Chem Int Ed Engl. 2012; 51(15):3562-6. DOI: 10.1002/anie.201108007. View

3.
Cao L, White J, Park J, Schuller J, Clemens B, Brongersma M . Engineering light absorption in semiconductor nanowire devices. Nat Mater. 2009; 8(8):643-7. DOI: 10.1038/nmat2477. View

4.
Gao L, Kester R, Hagen N, Tkaczyk T . Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy. Opt Express. 2010; 18(14):14330-44. PMC: 2909105. DOI: 10.1364/OE.18.014330. View

5.
Li Z, Clark A, Cooper J . Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano. 2015; 10(1):492-8. DOI: 10.1021/acsnano.5b05411. View