» Articles » PMID: 31633087

ROMOP: a Light-weight R Package for Interfacing with OMOP-formatted Electronic Health Record Data

Overview
Journal JAMIA Open
Date 2019 Oct 22
PMID 31633087
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Objectives: Electronic health record (EHR) data are increasingly used for biomedical discoveries. The nature of the data, however, requires expertise in both data science and EHR structure. The Observational Medical Out-comes Partnership (OMOP) common data model (CDM) standardizes the language and structure of EHR data to promote interoperability of EHR data for research. While the OMOP CDM is valuable and more attuned to research purposes, it still requires extensive domain knowledge to utilize effectively, potentially limiting more widespread adoption of EHR data for research and quality improvement.

Materials And Methods: We have created ROMOP: an R package for direct interfacing with EHR data in the OMOP CDM format.

Results: ROMOP streamlines typical EHR-related data processes. Its functions include exploration of data types, extraction and summarization of patient clinical and demographic data, and patient searches using any CDM vocabulary concept.

Conclusion: ROMOP is freely available under the Massachusetts Institute of Technology (MIT) license and can be obtained from GitHub (http://github.com/BenGlicksberg/ROMOP). We detail instructions for setup and use in the Supplementary Materials. Additionally, we provide a public sandbox server containing synthesized clinical data for users to explore OMOP data and ROMOP (http://romop.ucsf.edu).

Citing Articles

ricu: R's interface to intensive care data.

Bennett N, Plecko D, Ukor I, Meinshausen N, Buhlmann P Gigascience. 2023; 12.

PMID: 37318234 PMC: 10268223. DOI: 10.1093/gigascience/giad041.


FIBER: enabling flexible retrieval of electronic health records data for clinical predictive modeling.

Datta S, Sachs J, FreitasDa Cruz H, Martensen T, Bode P, Sasso A JAMIA Open. 2021; 4(3):ooab048.

PMID: 34350388 PMC: 8327378. DOI: 10.1093/jamiaopen/ooab048.


The Sandbox Approach and its Potential for Use in Health Technology Assessment: A Literature Review.

Leckenby E, Dawoud D, Bouvy J, Jonsson P Appl Health Econ Health Policy. 2021; 19(6):857-869.

PMID: 34254275 PMC: 8545721. DOI: 10.1007/s40258-021-00665-1.


Clinical Research Informatics.

Daniel C, Kalra D Yearb Med Inform. 2020; 29(1):203-207.

PMID: 32823317 PMC: 7442510. DOI: 10.1055/s-0040-1702007.


Blockchain-Authenticated Sharing of Genomic and Clinical Outcomes Data of Patients With Cancer: A Prospective Cohort Study.

Glicksberg B, Burns S, Currie R, Griffin A, Wang Z, Haussler D J Med Internet Res. 2020; 22(3):e16810.

PMID: 32196460 PMC: 7125440. DOI: 10.2196/16810.


References
1.
Shaddox T, Ryan P, Schuemie M, Madigan D, Suchard M . Hierarchical Models for Multiple, Rare Outcomes Using Massive Observational Healthcare Databases. Stat Anal Data Min. 2017; 9(4):260-268. PMC: 5423675. DOI: 10.1002/sam.11324. View

2.
Huser V, Defalco F, Schuemie M, Ryan P, Shang N, Velez M . Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets. EGEMS (Wash DC). 2017; 4(1):1239. PMC: 5226382. DOI: 10.13063/2327-9214.1239. View

3.
Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus M . Evaluating common data models for use with a longitudinal community registry. J Biomed Inform. 2016; 64:333-341. PMC: 6810649. DOI: 10.1016/j.jbi.2016.10.016. View

4.
Blumenthal D, Tavenner M . The "meaningful use" regulation for electronic health records. N Engl J Med. 2010; 363(6):501-4. DOI: 10.1056/NEJMp1006114. View

5.
Bodenreider O . The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2003; 32(Database issue):D267-70. PMC: 308795. DOI: 10.1093/nar/gkh061. View