» Articles » PMID: 31632914

"Après Mois, Le Déluge": Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era

Overview
Journal Front Oncol
Specialty Oncology
Date 2019 Oct 22
PMID 31632914
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic resonance imaging provides a sea of quantitative and semi-quantitative data. While radiation oncologists already navigate a pool of clinical (semantic) and imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator devices and increasing interest in MRI-guided radiotherapy (MRIgRT), including adaptive MRIgRT. The variety of MR sequences (of greater complexity than the single parameter Hounsfield unit of CT scanning routinely used in radiotherapy), the workflow of adaptive fractionation, and the sheer quantity of daily images acquired are challenges for scaling this technology. Biomedical informatics, which is the science of information in biomedicine, can provide helpful insights for this looming transition. Funneling MRIgRT data into clinically meaningful information streams requires committing to the flow of inter-institutional data accessibility and interoperability initiatives, standardizing MRIgRT dosimetry methods, streamlining MR linear accelerator workflow, and standardizing MRI acquisition and post-processing. This review will attempt to conceptually ford these topics using clinical informatics approaches as a theoretical bridge.

Citing Articles

Institutionalisation of convergent medical innovation: an empirical study of the MRI-guided linear accelerator in the Netherlands and the United States.

Hehakaya C, Moors E Innovation (North Syd). 2025; 27(1):74-95.

PMID: 39935856 PMC: 11809769. DOI: 10.1080/14479338.2023.2213212.


Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge.

Wahid K, Dede C, El-Habashy D, Kamel S, Rooney M, Khamis Y ArXiv. 2024; .

PMID: 39650598 PMC: 11623708.


Radiomics-enhanced early regression index for predicting treatment response in rectal cancer: a multi-institutional 0.35 T MRI-guided radiotherapy study.

Boldrini L, Chiloiro G, Cusumano D, Yadav P, Yu G, Romano A Radiol Med. 2024; 129(4):615-622.

PMID: 38512616 DOI: 10.1007/s11547-024-01761-7.


Deep-learning-based generation of synthetic 6-minute MRI from 2-minute MRI for use in head and neck cancer radiotherapy.

Wahid K, Xu J, El-Habashy D, Khamis Y, Abobakr M, McDonald B Front Oncol. 2022; 12:975902.

PMID: 36425548 PMC: 9679225. DOI: 10.3389/fonc.2022.975902.


Implementation of Magnetic Resonance Imaging-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States.

Hehakaya C, Sharma A, van der Voort Van Zijp J, Grobbee D, Verkooijen H, Izaguirre E Adv Radiat Oncol. 2022; 7(5):100953.

PMID: 35651662 PMC: 9149022. DOI: 10.1016/j.adro.2022.100953.


References
1.
Bi W, Hosny A, Schabath M, Giger M, Birkbak N, Mehrtash A . Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019; 69(2):127-157. PMC: 6403009. DOI: 10.3322/caac.21552. View

2.
Stanley J, Dunscombe P, Lau H, Burns P, Lim G, Liu H . The effect of contouring variability on dosimetric parameters for brain metastases treated with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2013; 87(5):924-31. DOI: 10.1016/j.ijrobp.2013.09.013. View

3.
Salembier C, Villeirs G, De Bari B, Hoskin P, Pieters B, van Vulpen M . ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother Oncol. 2018; 127(1):49-61. DOI: 10.1016/j.radonc.2018.01.014. View

4.
Rajkomar A, Dean J, Kohane I . Machine Learning in Medicine. N Engl J Med. 2019; 380(14):1347-1358. DOI: 10.1056/NEJMra1814259. View

5.
Wang X, Li L, Hu C, Qiu J, Xu Z, Feng Y . A comparative study of three CT and MRI registration algorithms in nasopharyngeal carcinoma. J Appl Clin Med Phys. 2009; 10(2):3-10. PMC: 5720458. DOI: 10.1120/jacmp.v10i2.2906. View