» Articles » PMID: 31607653

Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration

Abstract

In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices.

Citing Articles

Illuminating understudied kinases: a generalizable biosensor development method applied to protein kinase N.

Bogomolovas J, Chen J Commun Biol. 2025; 8(1):109.

PMID: 39843538 PMC: 11754634. DOI: 10.1038/s42003-025-07510-4.


Intracellular pressure controls the propagation of tension in crumpled cell membranes.

Dharan R, Barnoy A, Tsaturyan A, Grossman A, Goren S, Yosibash I Nat Commun. 2025; 16(1):91.

PMID: 39747015 PMC: 11696741. DOI: 10.1038/s41467-024-55398-1.


Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images.

Huang Y, Zhou Z, Liu T, Tang S, Xin X NPJ Syst Biol Appl. 2024; 10(1):129.

PMID: 39505883 PMC: 11542073. DOI: 10.1038/s41540-024-00459-w.


Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells.

Martin E, Girardello R, Dittmar G, Ludwig A Elife. 2024; 13.

PMID: 39315773 PMC: 11509677. DOI: 10.7554/eLife.85601.


Tutorial: fluorescence lifetime microscopy of membrane mechanosensitive Flipper probes.

Roffay C, Garcia-Arcos J, Chapuis P, Lopez-Andarias J, Schneider F, Colom A Nat Protoc. 2024; 19(12):3457-3469.

PMID: 39210094 DOI: 10.1038/s41596-024-01027-6.


References
1.
Denais C, Gilbert R, Isermann P, McGregor A, Te Lindert M, Weigelin B . Nuclear envelope rupture and repair during cancer cell migration. Science. 2016; 352(6283):353-8. PMC: 4833568. DOI: 10.1126/science.aad7297. View

2.
Lachmann S, Jevons A, De Rycker M, Casamassima A, Radtke S, Collazos A . Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration. PLoS One. 2011; 6(7):e21732. PMC: 3130767. DOI: 10.1371/journal.pone.0021732. View

3.
Hamaguchi T, Ito M, Feng J, Seko T, Koyama M, Machida H . Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun. 2000; 274(3):825-30. DOI: 10.1006/bbrc.2000.3225. View

4.
Cukierman E, Pankov R, Stevens D, Yamada K . Taking cell-matrix adhesions to the third dimension. Science. 2001; 294(5547):1708-12. DOI: 10.1126/science.1064829. View

5.
Roberts D, ODwyer S, Stern P, Renehan A . Global gene expression in pseudomyxoma peritonei, with parallel development of two immortalized cell lines. Oncotarget. 2015; 6(13):10786-800. PMC: 4484419. DOI: 10.18632/oncotarget.3198. View