» Articles » PMID: 31597916

Reconfiguration of Interfacial Energy Band Structure for High-performance Inverted Structure Perovskite Solar Cells

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Oct 11
PMID 31597916
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Charged defects at the surface of the organic-inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.

Citing Articles

Top-Down Dual-Interface Carrier Management for Highly Efficient and Stable Perovskite/Silicon Tandem Solar Cells.

Li X, Ying Z, Li S, Chen L, Zhang M, Liu L Nanomicro Lett. 2025; 17(1):141.

PMID: 39932612 PMC: 11813841. DOI: 10.1007/s40820-024-01631-x.


Toward Understanding the Built-in Field in Perovskite Solar Cells through Layer-by-Layer Surface Photovoltage Measurements.

Gutierrez-Partida E, Rusu M, Zu F, Raoufi M, Diekmann J, Tokmoldin N ACS Appl Mater Interfaces. 2025; 17(7):11176-11186.

PMID: 39907681 PMC: 11843610. DOI: 10.1021/acsami.4c14194.


Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells.

Peng Y, Chen Y, Zhou J, Luo C, Tang W, Duan Y Nat Commun. 2025; 16(1):1252.

PMID: 39893189 PMC: 11787323. DOI: 10.1038/s41467-024-55653-5.


Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CHNHPbI Photovoltaic Photodiodes.

Kim W, Park J, Jeong H, Lee K, Yang S, Choi E Polymers (Basel). 2025; 17(2).

PMID: 39861236 PMC: 11768244. DOI: 10.3390/polym17020163.


Spontaneous curvature in two-dimensional van der Waals heterostructures.

Gao Y, Deng F, He R, Zhong Z Nat Commun. 2025; 16(1):717.

PMID: 39819969 PMC: 11739405. DOI: 10.1038/s41467-025-56055-x.


References
1.
Liu M, Johnston M, Snaith H . Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013; 501(7467):395-8. DOI: 10.1038/nature12509. View

2.
Chen X, Lai J, Shen Y, Chen Q, Chen L . Functional Scanning Force Microscopy for Energy Nanodevices. Adv Mater. 2018; 30(48):e1802490. DOI: 10.1002/adma.201802490. View

3.
Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J . Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature. 2018; 555(7697):497-501. DOI: 10.1038/nature25989. View

4.
Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R . Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science. 2018; 360(6396):1442-1446. DOI: 10.1126/science.aap9282. View

5.
Jiang C, Yang M, Zhou Y, To B, Nanayakkara S, Luther J . Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat Commun. 2015; 6:8397. PMC: 4598624. DOI: 10.1038/ncomms9397. View