» Articles » PMID: 31594921

From Spinodal Decomposition to Alternating Layered Structure Within Single Crystals of Biogenic Magnesium Calcite

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Oct 10
PMID 31594921
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

As organisms can form crystals only under ambient conditions, they demonstrate fascinating strategies to overcome this limitation. Recently, we reported a previously unknown biostrategy for toughening brittle calcite crystals, using coherently incorporated Mg-rich nanoprecipitates arranged in a layered manner in the lenses of a brittle star, Ophiocoma wendtii. Here we propose the mechanisms of formation of this functional hierarchical structure under conditions of ambient temperature and limited solid diffusion. We propose that formation proceeds via a spinodal decomposition of a liquid or gel-like magnesium amorphous calcium carbonate (Mg-ACC) precursor into Mg-rich nanoparticles and a Mg-depleted amorphous matrix. In a second step, crystallization of the decomposed amorphous precursor leads to the formation of high-Mg particle-rich layers. The model is supported by our experimental results in synthetic systems. These insights have significant implications for fundamental understanding of the role of Mg-ACC material transformation during crystallization and its subsequent stability.

Citing Articles

Formation, chemical evolution and solidification of the dense liquid phase of calcium (bi)carbonate.

Jin B, Chen Y, Pyles H, Baer M, Legg B, Wang Z Nat Mater. 2024; 24(1):125-132.

PMID: 39448841 DOI: 10.1038/s41563-024-02025-5.


Triggered metabolism of adenosine triphosphate as an explanation for the chemical heterogeneity of heterotopic ossification.

Sui C, Robinson T, Williams R, Eisenstein N, Grover L Commun Chem. 2023; 6(1):227.

PMID: 37857687 PMC: 10587346. DOI: 10.1038/s42004-023-01015-z.


Mg-rich amorphous to Mg-low crystalline CaCO pathway in foraminifera.

Dubicka Z, Bojanowski M, Bijma J, Bickmeyer U Heliyon. 2023; 9(7):e18331.

PMID: 37519760 PMC: 10375801. DOI: 10.1016/j.heliyon.2023.e18331.


Nanoscale Pathway of Modern Dolomite Formation in a Shallow, Alkaline Lake.

Meister P, Frisia S, Dodony I, Pekker P, Molnar Z, Neuhuber S Cryst Growth Des. 2023; 23(5):3202-3212.

PMID: 37159654 PMC: 10162443. DOI: 10.1021/acs.cgd.2c01393.


Bioprocess inspired formation of calcite mesocrystals by cation-mediated particle attachment mechanism.

Wang Q, Yuan B, Huang W, Ping H, Xie J, Wang K Natl Sci Rev. 2023; 10(4):nwad014.

PMID: 36960223 PMC: 10029847. DOI: 10.1093/nsr/nwad014.


References
1.
Finnemore A, Cunha P, Shean T, Vignolini S, Guldin S, Oyen M . Biomimetic layer-by-layer assembly of artificial nacre. Nat Commun. 2012; 3:966. DOI: 10.1038/ncomms1970. View

2.
Hendley 4th C, Fielding L, Jones E, Ryan A, Armes S, Estroff L . Mechanistic Insights into Diblock Copolymer Nanoparticle-Crystal Interactions Revealed via in Situ Atomic Force Microscopy. J Am Chem Soc. 2018; 140(25):7936-7945. DOI: 10.1021/jacs.8b03828. View

3.
Sommerdijk N, Cusack M . Biomineralization: Crystals competing for space. Nat Mater. 2014; 13(12):1078-9. DOI: 10.1038/nmat4147. View

4.
Ma Y, Aichmayer B, Paris O, Fratzl P, Meibom A, Metzler R . The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc Natl Acad Sci U S A. 2009; 106(15):6048-53. PMC: 2662956. DOI: 10.1073/pnas.0810300106. View

5.
Gebauer D, Kellermeier M, Gale J, Bergstrom L, Colfen H . Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev. 2014; 43(7):2348-71. DOI: 10.1039/c3cs60451a. View