» Articles » PMID: 31576241

Collisional Mechanics of the Diagonal Gaits of Horses over a Range of Speeds

Overview
Journal PeerJ
Date 2019 Oct 3
PMID 31576241
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

One of the goals of the neuromotor control system is to minimize the cost of locomotion by reducing mechanical energy losses. Collisional mechanics, which studies the redirection of the downwards motion of the center of mass (COM) by ground reaction forces (GRF) generated by the limbs, represents an important source of energy loss. The primary objective of this study was to compare collisional mechanics and the associated mechanical energy losses in horses performing diagonally-synchronized gaits over a range of speeds. It is to be expected that collisional energy losses will be high when the COM velocity vector is closely aligned with the GRF vector. This condition is achieved in piaffe, an artificial gait performed in dressage competitions that has a diagonal limb coordination pattern similar to trot but performed with little or no forward velocity. Therefore, we hypothesized that collisional energy losses would be higher in piaffe than in trot. Synchronized kinematic and GRF data were collected from three highly-trained horses performing piaffe, passage and trot at a range of speeds. Derived variables were vertical excursion and velocity of the trunk COM, fore and hind limb compression expressed as percentage reduction of standing limb lengths, range of limb pro-retraction, GRF vector magnitude and vector angle, collision angle (Φ), and mechanical cost of motion (CoMot). Linear regression was used to investigate the relationship between CoMot and speed for each gait. Partial correlation was used to seek relationships between COM excursion and limb mechanics for each gait. Piaffe, passage and trot were clearly separated on the basis of speed. In all gaits the trunk was high at contact and lift off and descended to its lowest point in midstance following the pattern typical of spring mass mechanics. Mechanical cost was significantly ( < .05) and inversely related to speed in trot and piaffe with the value increasing steeply as speed approached zero due to a near vertical orientation of both the COM velocity vector and the GRF vector. Limb compression during stance was significantly ( < .05) linked to trunk COM vertical excursion in all gaits, with a stronger relationship in the forelimb. Hindlimb compression was, however, large in piaffe where the force magnitudes are notably smaller. The study illustrates the potential value of studying artificial gaits to provide data encompassing the entire range of locomotor capabilities. The results supported the experimental hypothesis by showing a threefold increase in collisional energy losses in piaffe compared with trot. In all gaits, dissociation between diagonal limb contacts and lift offs was thought to be an important strategy in reducing in collisional losses. Piaffe, the most costly gait, has similar characteristics to hopping on the spot. It appears that greater hindlimb compliance and a lower step frequency are important energy conservation strategies for piaffe.

Citing Articles

Short Communication: changes in gait after 12 wk of shoeing in previously barefoot horses.

Panos K, Morgan K, Gately R, Wilkinson J, Uden A, Reed S J Anim Sci. 2022; 101.

PMID: 36383438 PMC: 9838798. DOI: 10.1093/jas/skac374.


Ground Reaction Forces of Dressage Horses Performing the Piaffe.

Clayton H, Hobbs S Animals (Basel). 2021; 11(2).

PMID: 33567549 PMC: 7915051. DOI: 10.3390/ani11020436.


A Review of Biomechanical Gait Classification with Reference to Collected Trot, Passage and Piaffe in Dressage Horses.

Clayton H, Hobbs S Animals (Basel). 2019; 9(10).

PMID: 31623360 PMC: 6826507. DOI: 10.3390/ani9100763.

References
1.
de Cocq P, Clayton H, Terada K, Muller M, van Leeuwen J . Usability of normal force distribution measurements to evaluate asymmetrical loading of the back of the horse and different rider positions on a standing horse. Vet J. 2008; 181(3):266-73. DOI: 10.1016/j.tvjl.2008.03.002. View

2.
Hobbs S, Bertram J, Clayton H . An exploration of the influence of diagonal dissociation and moderate changes in speed on locomotor parameters in trotting horses. PeerJ. 2016; 4:e2190. PMC: 4933092. DOI: 10.7717/peerj.2190. View

3.
Weishaupt M, Bystrom A, von Peinen K, Wiestner T, Meyers H, Waldern N . Kinetics and kinematics of the passage. Equine Vet J. 2009; 41(3):263-7. DOI: 10.2746/042516409x397226. View

4.
Licka T, Kapaun M, Peham C . Influence of rider on lameness in trotting horses. Equine Vet J. 2005; 36(8):734-6. DOI: 10.2746/0425164044848028. View

5.
de Cocq P, van Weeren P, Back W . Effects of girth, saddle and weight on movements of the horse. Equine Vet J. 2005; 36(8):758-63. DOI: 10.2746/0425164044848000. View