» Articles » PMID: 31559142

Perturbed Microbial Ecology in Myasthenia Gravis: Evidence from the Gut Microbiome and Fecal Metabolome

Overview
Journal Adv Sci (Weinh)
Date 2019 Sep 28
PMID 31559142
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Myasthenia gravis (MG) is a devastating acquired autoimmune disease. Emerging evidence indicates that the gut microbiome plays a key role in maintaining immune system homeostasis. This work reports that MG is characterized by decreased α-phylogenetic diversity, and significantly disturbed gut microbiome and fecal metabolome. The altered gut microbial composition is associated with fecal metabolome changes, with 38.75% of altered bacterial operational taxonomic units showing significant correlations with a range of metabolite biomarkers. Some microbes are particularly linked with MG severity. Moreover, a combination of microbial makers and their correlated metabolites enable discriminating MG from healthy controls (HCs) with 100% accuracy. To investigate whether disturbed gut mcirobiome might contribute to the onset of MG, germ-free (GF) mice are initially colonized with MG microbiota (MMb) or healthy microbiota (HMb), and then immunized in a classic mouse model of MG. The MMb mice demonstrate substantially impaired locomotion ability compared with the HMb mice. This effect could be reversed by cocolonizing GF mice with both MMb and HMb. The MMb mice also exhibit similar disturbances of fecal metabolic pathways as found in MG. Together these data demonstrate disturbances in microbiome composition and activity that are likely to be relevant to the pathogenesis of MG.

Citing Articles

Myasthenia gravis in 2025: five new things and four hopes for the future.

Binks S, Morse I, Ashraghi M, Vincent A, Waters P, Leite M J Neurol. 2025; 272(3):226.

PMID: 39987373 PMC: 11846739. DOI: 10.1007/s00415-025-12922-7.


Perturbations in gut microbiota composition in patients with autoimmune neurological diseases: a systematic review and meta-analysis.

Deng X, Gong X, Zhou D, Hong Z Front Immunol. 2025; 16:1513599.

PMID: 39981228 PMC: 11839609. DOI: 10.3389/fimmu.2025.1513599.


Gut microbial profiles of patients with optic neuritis or myasthenia gravis.

Wu T, Jiang H, Lin C, Peng J, Kong X, Yu J J Int Med Res. 2025; 53(2):3000605251314817.

PMID: 39904582 PMC: 11795606. DOI: 10.1177/03000605251314817.


approaches open new horizons in major depressive disorder: from biomarkers to precision medicine.

Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V Front Psychiatry. 2024; 15:1422939.

PMID: 38938457 PMC: 11210496. DOI: 10.3389/fpsyt.2024.1422939.


Explainable machine learning model for identifying key gut microbes and metabolites biomarkers associated with myasthenia gravis.

Chang C, Liu T, Lu C, Chiu H, Lin W Comput Struct Biotechnol J. 2024; 23:1572-1583.

PMID: 38650589 PMC: 11035017. DOI: 10.1016/j.csbj.2024.04.025.


References
1.
Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal W, Strowig T . Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012; 482(7384):179-85. PMC: 3276682. DOI: 10.1038/nature10809. View

2.
Levy M, Kolodziejczyk A, Thaiss C, Elinav E . Dysbiosis and the immune system. Nat Rev Immunol. 2017; 17(4):219-232. DOI: 10.1038/nri.2017.7. View

3.
Yang D, Su Z, Wu S, Bi Y, Li X, Li J . Low antioxidant status of serum bilirubin, uric acid, albumin and creatinine in patients with myasthenia gravis. Int J Neurosci. 2015; 126(12):1120-6. DOI: 10.3109/00207454.2015.1134526. View

4.
Yarza P, Yilmaz P, Pruesse E, Glockner F, Ludwig W, Schleifer K . Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014; 12(9):635-45. DOI: 10.1038/nrmicro3330. View

5.
Wang C, Li H, Zhang M, Li X, Yue L, Zhang P . Caspase-1 inhibitor ameliorates experimental autoimmune myasthenia gravis by innate dendric cell IL-1-IL-17 pathway. J Neuroinflammation. 2015; 12:118. PMC: 4470006. DOI: 10.1186/s12974-015-0334-4. View