» Articles » PMID: 31505815

A Smartphone-Based Whole-Cell Array Sensor for Detection of Antibiotics in Milk

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2019 Sep 12
PMID 31505815
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We present an integral smartphone-based whole-cell biosensor, LumiCellSense (LCS), which incorporates a 16-well biochip with an oxygen permeable coating, harboring bioluminescent bioreporter cells, a macro lens, a lens barrel, a metal heater tray, and a temperature controller, enclosed in a light-impermeable case. The luminescence emitted by the bioreporter cells in response to the presence of the target chemicals is imaged by the phone's camera, and a dedicated phone-embedded application, LCS_Logger, is employed to calculate photon emission intensity and plot it in real time on the device's screen. An alert is automatically given when light intensity increases above the baseline, indicating the presence of the target. We demonstrate the efficacy of this system by the detection of residues of an antibiotic, ciprofloxacin (CIP), in whole milk, with a detection threshold of 7.2 ng/mL. This value is below the allowed maximum as defined by European Union regulations.

Citing Articles

Bioluminescent Microbial Bioreporters: A Personal Perspective.

Belkin S Biosensors (Basel). 2025; 15(2).

PMID: 39997013 PMC: 11853290. DOI: 10.3390/bios15020111.


Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis.

Pradanas-Gonzalez F, Cortes M, Glahn-Martinez B, Del Barrio M, Purohit P, Benito-Pena E Anal Bioanal Chem. 2024; 416(30):7205-7224.

PMID: 39325139 DOI: 10.1007/s00216-024-05552-x.


Smartphone-Based Quantitative Analysis of Protein Array Signals for Biomarker Detection in Lupus.

Yang G, Li Y, Tang C, Lin F, Wu T, Bao J Chemosensors (Basel). 2022; 10(8).

PMID: 36072130 PMC: 9447405. DOI: 10.3390/chemosensors10080330.


Microbial whole-cell biosensors: Current applications, challenges, and future perspectives.

Moraskie M, Roshid M, OConnor G, Dikici E, Zingg J, Deo S Biosens Bioelectron. 2021; 191:113359.

PMID: 34098470 PMC: 8376793. DOI: 10.1016/j.bios.2021.113359.


Microfluidic Based Whole-Cell Biosensors for Simultaneously On-Site Monitoring of Multiple Environmental Contaminants.

Cao Y, Zhang B, Zhu Z, Xin X, Wu H, Chen B Front Bioeng Biotechnol. 2021; 9:622108.

PMID: 33791284 PMC: 8006271. DOI: 10.3389/fbioe.2021.622108.


References
1.
Kao W, Belkin S, Cheng J . Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Anal Bioanal Chem. 2017; 410(4):1257-1263. DOI: 10.1007/s00216-017-0792-x. View

2.
Van Boeckel T, Gandra S, Ashok A, Caudron Q, Grenfell B, Levin S . Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014; 14(8):742-750. DOI: 10.1016/S1473-3099(14)70780-7. View

3.
Melamed S, Naftaly S, Belkin S . Improved detection of antibiotic compounds by bacterial reporter strains achieved by manipulations of membrane permeability and efflux capacity. Appl Microbiol Biotechnol. 2013; 98(5):2267-77. DOI: 10.1007/s00253-013-5176-3. View

4.
Kanchi S, Sabela M, Mdluli P, Inamuddin , Bisetty K . Smartphone based bioanalytical and diagnosis applications: A review. Biosens Bioelectron. 2017; 102:136-149. DOI: 10.1016/j.bios.2017.11.021. View

5.
Pan M, Li S, Wang J, Sheng W, Wang S . Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. Sensors (Basel). 2017; 17(9). PMC: 5621032. DOI: 10.3390/s17091984. View