» Articles » PMID: 31504472

Evolutionary Dissection of the Dot/Icm System Based on Comparative Genomics of 58 Legionella Species

Overview
Date 2019 Sep 11
PMID 31504472
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The Dot/Icm type IVB secretion system of Legionella pneumophila is essential for its pathogenesis by delivering >300 effector proteins into the host cell. However, their precise secretion mechanism and which components interact with the host cell is only partly understood. Here, we undertook evolutionary analyses of the Dot/Icm system of 58 Legionella species to identify those components that interact with the host and/or the substrates. We show that high recombination rates are acting on DotA, DotG, and IcmX, supporting exposure of these proteins to the host. Specific amino acids under positive selection on the periplasmic region of DotF, and the cytoplasmic domain of DotM, support a role of these regions in substrate binding. Diversifying selection acting on the signal peptide of DotC suggests its interaction with the host after cleavage. Positive selection acts on IcmR, IcmQ, and DotL revealing that these components are probably participating in effector recognition and/or translocation. Furthermore, our results predict the participation in host/effector interaction of DotV and IcmF. In contrast, DotB, DotO, most of the core subcomplex elements, and the chaperones IcmS-W show a high degree of conservation and not signs of recombination or positive selection suggesting that these proteins are under strong structural constraints and have an important role in maintaining the architecture/function of the system. Thus, our analyses of recombination and positive selection acting on the Dot/Icm secretion system predicted specific Dot/Icm components and regions implicated in host interaction and/or substrate recognition and translocation, which will guide further functional analyses.

Citing Articles

Membrane association and polar localization of the T4SS DotO ATPase mediated by two nonredundant receptors.

Vijayrajratnam S, Milek S, Maggi S, Ashen K, Ferrell M, Hasanovic A Proc Natl Acad Sci U S A. 2024; 121(41):e2401897121.

PMID: 39352935 PMC: 11474061. DOI: 10.1073/pnas.2401897121.


Functional characterization of VirB/VirD4 and Icm/Dot type IV secretion systems from the plant-pathogenic bacterium .

Drehkopf S, Scheibner F, Buttner D Front Cell Infect Microbiol. 2023; 13:1203159.

PMID: 37593760 PMC: 10432156. DOI: 10.3389/fcimb.2023.1203159.


Structure and Function of the Dot/Icm T4SS.

Dutka P, Liu Y, Maggi S, Ghosal D, Wang J, Carter S bioRxiv. 2023; .

PMID: 36993699 PMC: 10055428. DOI: 10.1101/2023.03.22.533729.


Concept about the Virulence Factor of .

Yang J, Li D, Zhan X Microorganisms. 2023; 11(1).

PMID: 36677366 PMC: 9867486. DOI: 10.3390/microorganisms11010074.


Host Adaptation in Legionellales Is 1.9 Ga, Coincident with Eukaryogenesis.

Hugoson E, Guliaev A, Ammunet T, Guy L Mol Biol Evol. 2022; 39(3).

PMID: 35167692 PMC: 8896642. DOI: 10.1093/molbev/msac037.


References
1.
Farelli J, Gumbart J, Akey I, Hempstead A, Amyot W, Head J . IcmQ in the Type 4b secretion system contains an NAD+ binding domain. Structure. 2013; 21(8):1361-73. PMC: 3816012. DOI: 10.1016/j.str.2013.05.017. View

2.
Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert J . Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet. 2016; 48(2):167-75. PMC: 5050043. DOI: 10.1038/ng.3481. View

3.
Castresana J . Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17(4):540-52. DOI: 10.1093/oxfordjournals.molbev.a026334. View

4.
Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J . Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One. 2011; 6(3):e17638. PMC: 3052360. DOI: 10.1371/journal.pone.0017638. View

5.
Segal G, Purcell M, Shuman H . Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A. 1998; 95(4):1669-74. PMC: 19142. DOI: 10.1073/pnas.95.4.1669. View