» Articles » PMID: 31503518

Mutations in the H7 HA and PB1 Genes of Avian Influenza a Viruses Increase Viral Pathogenicity and Contact Transmission in Guinea Pigs

Abstract

Avian influenza A viruses (AIV) of the H7 subtype continue to evolve posing a pandemic threat. However, molecular markers of H7N7 AIV pathogenicity and transmission in mammals remain poorly understood. In this study, we performed a systematic and analysis by comparing an H7N7 highly pathogenic AIV and its ferret adapted variant. Passaging an H7N7 AIV in ferrets led to six mutations in genes encoding the viral polymerase complex and the viral surface proteins. Here, we show that mutations in the H7 hemagglutinin gene cause increased pathogenicity in mice. Contact transmission between guinea pigs required additional mutations in the gene encoding the polymerase subunit PB1. Thus, particular vigilance is required with respect to HA and PB1 mutations as predictive molecular markers to assess the pandemic risk posed by emerging H7 avian influenza viruses.

Citing Articles

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

He L, Zhang Y, Si K, Yu C, Shang K, Yu Z BMC Genomics. 2024; 25(1):1249.

PMID: 39725881 PMC: 11673856. DOI: 10.1186/s12864-024-11152-x.


Amino acid mutations PB1-V719M and PA-N444D combined with PB2-627K contribute to the pathogenicity of H7N9 in mice.

Wang X, Tang X, Zheng H, Gao R, Lu X, Yang W Vet Res. 2024; 55(1):86.

PMID: 38970119 PMC: 11227215. DOI: 10.1186/s13567-024-01342-6.


Molecular Characterization and Pathogenesis of H6N6 Low Pathogenic Avian Influenza Viruses Isolated from Mallard Ducks () in South Korea.

Durairaj K, Trinh T, Yun S, Yeo S, Sung H, Park H Viruses. 2022; 14(5).

PMID: 35632743 PMC: 9143286. DOI: 10.3390/v14051001.


Substitution Arg140Gly in Hemagglutinin Reduced the Virulence of Highly Pathogenic Avian Influenza Virus H7N1.

Treshchalina A, Postnikova Y, Boravleva E, Gambaryan A, Belyakova A, Ishmukhametov A Viruses. 2021; 13(8).

PMID: 34452449 PMC: 8402889. DOI: 10.3390/v13081584.


Animal Models for Influenza Research: Strengths and Weaknesses.

Nguyen T, Rollon R, Choi Y Viruses. 2021; 13(6).

PMID: 34071367 PMC: 8228315. DOI: 10.3390/v13061011.


References
1.
Stamminger T, Gstaiger M, Weinzierl K, Lorz K, Winkler M, Schaffner W . Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J Virol. 2002; 76(10):4836-47. PMC: 136153. DOI: 10.1128/jvi.76.10.4836-4847.2002. View

2.
Katoh K, Misawa K, Kuma K, Miyata T . MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30(14):3059-66. PMC: 135756. DOI: 10.1093/nar/gkf436. View

3.
Gabriel G, Dauber B, Wolff T, Planz O, Klenk H, Stech J . The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A. 2005; 102(51):18590-5. PMC: 1317936. DOI: 10.1073/pnas.0507415102. View

4.
Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y . Avian flu: influenza virus receptors in the human airway. Nature. 2006; 440(7083):435-6. DOI: 10.1038/440435a. View

5.
van Riel D, Munster V, de Wit E, Rimmelzwaan G, Fouchier R, Osterhaus A . H5N1 Virus Attachment to Lower Respiratory Tract. Science. 2006; 312(5772):399. DOI: 10.1126/science.1125548. View