» Articles » PMID: 31492875

Balancing Hydrogen Adsorption/desorption by Orbital Modulation for Efficient Hydrogen Evolution Catalysis

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Sep 8
PMID 31492875
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction (HER) catalysis. The HER reaction rate is a trade-off between hydrogen adsorption and desorption on the catalyst surface. Herein, we report the rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms. Theoretical calculations reveal that the empty d orbitals of iridium (Ir) sites can be reduced by interactions between the environmental electronegative C/N and Ir atoms. This balances the hydrogen adsorption/desorption around the Ir sites, accelerating the related HER process. Remarkably, by anchoring a small amount of Ir nanoparticles (7.16 wt%) in nitrogenated carbon matrixes, the resulting catalyst exhibits significantly enhanced HER performance. This includs the smallest reported overpotential at 10 mA cm (4.5 mV), the highest mass activity at 10 mV (1.12 A mg) and turnover frequency at 25 mV (4.21 H s) by far, outperforming Ir nanoparticles and commercial Pt/C.

Citing Articles

High-Performance Nickel-Bismuth Oxide Electrocatalysts Applicable to Both the HER and OER in Alkaline Water Electrolysis.

Jo S, Kang B, An S, Jung H, Kwon J, Oh H ACS Appl Mater Interfaces. 2025; 17(8):11946-11955.

PMID: 39935211 PMC: 11873901. DOI: 10.1021/acsami.4c15514.


Engineering triple O-Ti-O vacancy associates for efficient water-activation catalysis.

Bi F, Meng Q, Zhang Y, Chen H, Jiang B, Lu H Nat Commun. 2025; 16(1):851.

PMID: 39833189 PMC: 11747487. DOI: 10.1038/s41467-025-56190-5.


Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective.

Zhu Y, Li L, Cheng H, Ma J JACS Au. 2024; 4(12):4639-4654.

PMID: 39735935 PMC: 11672133. DOI: 10.1021/jacsau.4c00898.


Co-complexes on modified graphite surface for steady green hydrogen production from water at neutral pH.

Toledo-Carrillo E, Garcia-Rodriguez M, Morallon E, Cazorla-Amoros D, Ye F, Kundi V Front Chem. 2024; 12:1469804.

PMID: 39403697 PMC: 11472121. DOI: 10.3389/fchem.2024.1469804.


Ultrafast electron transfer at the InO/NbO S-scheme interface for CO photoreduction.

Deng X, Zhang J, Qi K, Liang G, Xu F, Yu J Nat Commun. 2024; 15(1):4807.

PMID: 38839799 PMC: 11153544. DOI: 10.1038/s41467-024-49004-7.


References
1.
Mahmood J, Li F, Jung S, Okyay M, Ahmad I, Kim S . An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol. 2017; 12(5):441-446. DOI: 10.1038/nnano.2016.304. View

2.
Helveg S, Lopez-Cartes C, Sehested J, Hansen P, Clausen B, Rostrup-Nielsen J . Atomic-scale imaging of carbon nanofibre growth. Nature. 2004; 427(6973):426-9. DOI: 10.1038/nature02278. View

3.
Subbaraman R, Tripkovic D, Strmcnik D, Chang K, Uchimura M, Paulikas A . Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces. Science. 2011; 334(6060):1256-60. DOI: 10.1126/science.1211934. View

4.
Gong M, Zhou W, Tsai M, Zhou J, Guan M, Lin M . Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun. 2014; 5:4695. DOI: 10.1038/ncomms5695. View

5.
Li H, Tsai C, Koh A, Cai L, Contryman A, Fragapane A . Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater. 2015; 15(1):48-53. DOI: 10.1038/nmat4465. View