» Articles » PMID: 31479485

Decrypting the Environmental Sources of Mycobacterium Canettii by High-throughput Biochemical Profiling

Overview
Journal PLoS One
Date 2019 Sep 4
PMID 31479485
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Mycobacterium canettii is a smooth bacillus related to the Mycobacterium tuberculosis complex. It causes lymph nodes and pulmonary tuberculosis in patients living in countries of the Horn of Africa, including Djibouti. The environmental reservoirs of M. canettii are still unknown. We aimed to further decrypt these potential reservoirs by using an original approach of High-Throughput Carbon and Azote Substrate Profiling. The Biolog Phenotype profiling was performed on six clinical strains of M. canettii and one M. tuberculosis strain was used as a positive control. The experiments were duplicated and authenticated by negative controls. While M. tuberculosis metabolized 22/190 (11%) carbon substrates and 3/95 (3%) nitrogen substrates, 17/190 (8.9%) carbon substrates and three nitrogen substrates were metabolized by the six M. canettii strains forming the so-called corebiologome. A total at 16 carbon substrates and three nitrogen substrates were metabolized in common by M. tuberculosis and the six M. canettii strains. Moreover, at least one M. canettii strain metabolized 36/190 (19%) carbon substrates and 3/95 (3%) nitrogen substrates for a total of 39/285 (13%) substrates. Classifying these carbon and nitrogen substrates into ten potential environmental sources (plants, fruits and vegetables, bacteria, algae, fungi, nematodes, mollusks, mammals, insects and inanimate environment) significantly associated carbon and nitrogen substrates metabolized by at least one M. canettii strain with plants (p = 0.006). These results suggest that some plants endemic in the Horn of Africa may serve as ecological niches for M. canettii. Further ethnobotanical studies will indicate plant usages by local populations, then guiding field microbiological investigations in order to prove the definite environmental reservoirs of this opportunistic tuberculous pathogen.

Citing Articles

Draft genome sequences of clinical strains in Canada.

Islam M, Adam H, Akochy P, Sharma M, McGurran A, Soualhine H Microbiol Resour Announc. 2024; 13(10):e0062224.

PMID: 39297625 PMC: 11465794. DOI: 10.1128/mra.00622-24.


Molecular surveillance of tuberculosis-causing mycobacteria in wastewater.

Mtetwa H, Amoah I, Kumari S, Bux F, Reddy P Heliyon. 2022; 8(2):e08910.

PMID: 35198775 PMC: 8842018. DOI: 10.1016/j.heliyon.2022.e08910.

References
1.
Van der Riet F . Diseases of plants transmissible between plants and man (Phytonoses) exist--follow-up paper. Med Hypotheses. 2000; 54(2):310-1. DOI: 10.1054/mehy.1999.0703. View

2.
Kandela P . Women's rights, a tourist boom, and the power of khat in Yemen. Lancet. 2000; 355(9213):1437. DOI: 10.1016/s0140-6736(05)74640-7. View

3.
Fabre M, Koeck J, Le Fleche P, Simon F, Herve V, Vergnaud G . High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of "Mycobacterium canettii" strains indicates that the M. tuberculosis complex is a recently emerged clone of.... J Clin Microbiol. 2004; 42(7):3248-55. PMC: 446256. DOI: 10.1128/JCM.42.7.3248-3255.2004. View

4.
Bochner B . Global phenotypic characterization of bacteria. FEMS Microbiol Rev. 2008; 33(1):191-205. PMC: 2704929. DOI: 10.1111/j.1574-6976.2008.00149.x. View

5.
Mba Medie F, Ben Salah I, Drancourt M, Henrissat B . Paradoxical conservation of a set of three cellulose-targeting genes in Mycobacterium tuberculosis complex organisms. Microbiology (Reading). 2010; 156(Pt 5):1468-1475. DOI: 10.1099/mic.0.037812-0. View