» Articles » PMID: 31462631

Ultra-long Coherence Times Amongst Room-temperature Solid-state Spins

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Aug 30
PMID 31462631
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Solid-state single spins are promising resources for quantum sensing, quantum-information processing and quantum networks, because they are compatible with scalable quantum-device engineering. However, the extension of their coherence times proves challenging. Although enrichment of the spin-zero C and Si isotopes drastically reduces spin-bath decoherence in diamond and silicon, the solid-state environment provides deleterious interactions between the electron spin and the remaining spins of its surrounding. Here we demonstrate, contrary to widespread belief, that an impurity-doped (phosphorus) n-type single-crystal diamond realises remarkably long spin-coherence times. Single electron spins show the longest inhomogeneous spin-dephasing time ([Formula: see text] ms) and Hahn-echo spin-coherence time (T ≈ 2.4 ms) ever observed in room-temperature solid-state systems, leading to the best sensitivities. The extension of coherence times in diamond semiconductor may allow for new applications in quantum technology.

Citing Articles

Solid-state spin coherence time approaching the physical limit.

Han S, Ye X, Zhou X, Liu Z, Guo Y, Wang M Sci Adv. 2025; 11(9):eadr9298.

PMID: 40020055 PMC: 11870053. DOI: 10.1126/sciadv.adr9298.


Bright Quantum-Grade Fluorescent Nanodiamonds.

Oshimi K, Ishiwata H, Nakashima H, Mandic S, Kobayashi H, Teramoto M ACS Nano. 2024; 18(52):35202-35213.

PMID: 39681540 PMC: 11697348. DOI: 10.1021/acsnano.4c03424.


Quantum Coherence Control at Temperatures up to 1400 K.

Fan J, Guo S, Lin C, Wang N, Liu G, Li Q Nano Lett. 2024; 24(46):14806-14811.

PMID: 39529435 PMC: 11583336. DOI: 10.1021/acs.nanolett.4c04359.


Single and double quantum transitions in spin-mixed states under photo-excitation.

Patel A, Chowdhry Z, Prabhakar A, Rathi A, Bhallamudi V Sci Rep. 2024; 14(1):22421.

PMID: 39341935 PMC: 11439063. DOI: 10.1038/s41598-024-73118-z.


High-Dynamic-Range Integrated NV Magnetometers.

Wang T, Liu Z, Liu Y, Wang B, Shen Y, Qin L Micromachines (Basel). 2024; 15(5).

PMID: 38793235 PMC: 11122954. DOI: 10.3390/mi15050662.


References
1.
Veldhorst M, Hwang J, Yang C, Leenstra A, de Ronde B, Dehollain J . An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat Nanotechnol. 2014; 9(12):981-5. DOI: 10.1038/nnano.2014.216. View

2.
Muhonen J, Dehollain J, Laucht A, Hudson F, Kalra R, Sekiguchi T . Storing quantum information for 30 seconds in a nanoelectronic device. Nat Nanotechnol. 2014; 9(12):986-91. DOI: 10.1038/nnano.2014.211. View

3.
Kolesov R, Xia K, Reuter R, Stohr R, Zappe A, Meijer J . Optical detection of a single rare-earth ion in a crystal. Nat Commun. 2012; 3:1029. PMC: 3432461. DOI: 10.1038/ncomms2034. View

4.
Kubo Y, Grezes C, Dewes A, Umeda T, Isoya J, Sumiya H . Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys Rev Lett. 2011; 107(22):220501. DOI: 10.1103/PhysRevLett.107.220501. View

5.
Bar-Gill N, Pham L, Jarmola A, Budker D, Walsworth R . Solid-state electronic spin coherence time approaching one second. Nat Commun. 2013; 4:1743. DOI: 10.1038/ncomms2771. View