» Articles » PMID: 31460153

Novel Brönsted Acidic Ionic Liquids Confined in UiO-66 Nanocages for the Synthesis of Dihydropyrido[2,3-]Pyrimidine Derivatives Under Solvent-Free Conditions

Overview
Journal ACS Omega
Specialty Chemistry
Date 2019 Aug 29
PMID 31460153
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The effective and simple one-pot, three-component protocol for the synthesis of dihydropyrido[2,3-]pyrimidine derivatives is presented using a triethylenediamine or imidazole Brönsted acidic, ionic-liquid-supported Zr metal-organic framework (TEDA/IMIZ-BAIL@UiO-66) as a green, novel, and retrievable heterogeneous catalyst under mild conditions. The multicomponent reactions of 6-amino-1,3-dimethyl uracil, various aromatic aldehydes, and acetyl acetone were conducted under solvent-free conditions so that dihydropyrido[2,3-]pyrimidine derivatives can be obtained. It is possible to separate and purify the respective products easily using crystallization. We can recycle the catalysts six times without losing any major activity. Also, the characterization of the catalyst was done by energy-dispersive X-ray, field emission scanning electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller, X-ray diffraction, and thermogravimetric analysis analyses.

Citing Articles

Design and synthesis of PDSPTCF as an influential Brønsted-Lewis acidic catalyst for the producing benzo[a]benzo[6,7]chromeno[2,3-c]phenazines.

Ghribi W, Al-Ibadi M, Ganesan S, Kumar M, Jadeja Y, Chohan J Sci Rep. 2024; 14(1):29907.

PMID: 39622860 PMC: 11612410. DOI: 10.1038/s41598-024-78824-2.


Post-synthetic modification of Zr-based metal organic framework by schiff base zinc complex for catalytic applications in a click reaction.

Rezaie M, Khojastehnezhad A, Shiri A Sci Rep. 2024; 14(1):24644.

PMID: 39428419 PMC: 11491475. DOI: 10.1038/s41598-024-76199-y.


Catalytic Advantages of SOH-Modified UiO-66(Zr) Materials Obtained via Microwave Synthesis in Friedel-Crafts Acylation Reaction.

Bauza M, Leo P, Palomino Cabello C, Martin A, Orcajo G, Turnes Palomino G Inorg Chem. 2024; 63(38):17460-17468.

PMID: 39225690 PMC: 11423395. DOI: 10.1021/acs.inorgchem.4c01792.


AgO@UiO-66 new thin film as p-n heterojunction: permanent photoreduction of hexavalent Cr.

Amiri S, Chahkandi M, Zargazi M RSC Adv. 2024; 14(6):3867-3877.

PMID: 38274162 PMC: 10810231. DOI: 10.1039/d3ra06305d.


construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants.

Abdel Aziz Y, Sanad M, Abdelhameed R, Zaki A Front Chem. 2023; 10:1102920.

PMID: 36688034 PMC: 9845943. DOI: 10.3389/fchem.2022.1102920.


References
1.
Fernandez M, Barnard A . Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure. ACS Comb Sci. 2016; 18(5):243-52. DOI: 10.1021/acscombsci.5b00188. View

2.
Choi K, Jeon H, Kang J, Yaghi O . Heterogeneity within order in crystals of a porous metal-organic framework. J Am Chem Soc. 2011; 133(31):11920-3. DOI: 10.1021/ja204818q. View

3.
Domling , Ugi I . Multicomponent Reactions with Isocyanides. Angew Chem Int Ed Engl. 2000; 39(18):3168-3210. DOI: 10.1002/1521-3773(20000915)39:18<3168::aid-anie3168>3.0.co;2-u. View

4.
Wang T, Hod I, Audu C, Vermeulen N, Nguyen S, Farha O . Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. ACS Appl Mater Interfaces. 2017; 9(14):12584-12591. DOI: 10.1021/acsami.6b16834. View

5.
He T, Zhang Y, Kong X, Yu J, Lv X, Wu Y . Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of CrO in Water. ACS Appl Mater Interfaces. 2018; 10(19):16650-16659. DOI: 10.1021/acsami.8b03987. View