» Articles » PMID: 31459301

Direct -Scheme CsO-BiO-ZnO Heterostructures As Efficient Sunlight-Driven Photocatalysts

Overview
Journal ACS Omega
Specialty Chemistry
Date 2019 Aug 29
PMID 31459301
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Limited light absorption, inefficient electron-hole separation, and unsuitable positions of conduction band bottom and/or valence band top are three major critical issues associated with high-efficiency photocatalytic water treatment. An attempt has been carried out here to address these issues through the synthesis of direct -scheme CsO-BiO-ZnO heterostructures via a facile, fast, and economic method: solution combustions synthesis. The photocatalytic performances are examined by the 4-chlorophenol degradation test under simulated sunlight irradiation. UV-vis diffuse reflectance spectroscopy analysis, electrochemical impedance test, and the observed transient photocurrent responses prove not only the significant role of CsO in extending light absorption to visible and near-infrared regions but also its involvement in charge carrier separation. Radical-trapping experiments verify the direct -scheme approach followed by the charge carriers in heterostructured CsO-BiO-ZnO photocatalysts. The -scheme charge carrier pathway induced by the presence of CsO has emerged as the reason behind the efficient charge carrier separation and high photocatalytic activity.

Citing Articles

Novel polyvinyl alcohol-assisted MnO-ZnO-CuO nanocomposites as an efficient photocatalyst for methylene blue degradation from wastewater.

Gindose T, Gebreslassie G, Hailegebreal T, Ashebr T, Mtunzi F, Atisme T RSC Adv. 2024; 14(52):38459-38469.

PMID: 39635357 PMC: 11616714. DOI: 10.1039/d4ra06476c.


Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives.

Vagena I, Gatou M, Theocharous G, Pantelis P, Gazouli M, Pippa N Nanomaterials (Basel). 2024; 14(5).

PMID: 38470728 PMC: 10933906. DOI: 10.3390/nano14050397.


Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review.

Geldasa F, Kebede M, Shura M, Hone F RSC Adv. 2023; 13(27):18404-18442.

PMID: 37342807 PMC: 10278095. DOI: 10.1039/d3ra01505j.


One-Step Hydrothermal Synthesis of Anatase TiO Nanotubes for Efficient Photocatalytic CO Reduction.

Alkanad K, Hezam A, Al-Zaqri N, Abdullah Bajiri M, Alnaggar G, Drmosh Q ACS Omega. 2022; 7(43):38686-38699.

PMID: 36340094 PMC: 9631917. DOI: 10.1021/acsomega.2c04211.


Sunlight-Driven Combustion Synthesis of Defective Metal Oxide Nanostructures with Enhanced Photocatalytic Activity.

Hezam A, Namratha K, Ponnamma D, Drmosh Q, Saeed A, Sadasivuni K ACS Omega. 2019; 4(24):20595-20605.

PMID: 31858045 PMC: 6906766. DOI: 10.1021/acsomega.9b02564.


References
1.
Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y . In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces. 2013; 5(21):11392-401. DOI: 10.1021/am403653a. View

2.
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z . Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014; 43(15):5234-44. DOI: 10.1039/c4cs00126e. View

3.
Zhou P, Yu J, Jaroniec M . All-solid-state Z-scheme photocatalytic systems. Adv Mater. 2014; 26(29):4920-35. DOI: 10.1002/adma.201400288. View

4.
Tian H, Teng F, Xu J, Lou S, Li N, Zhao Y . An innovative anion regulation strategy for energy bands of semiconductors: a case from Bi2O3 to Bi2O(OH)2SO4. Sci Rep. 2015; 5:7770. PMC: 4297957. DOI: 10.1038/srep07770. View

5.
Wang J, Zhang L, Fang W, Ren J, Li Y, Yao H . Enhanced Photoreduction CO₂ Activity over Direct Z-Scheme α-Fe₂O₃/Cu₂O Heterostructures under Visible Light Irradiation. ACS Appl Mater Interfaces. 2015; 7(16):8631-9. DOI: 10.1021/acsami.5b00822. View