» Articles » PMID: 31453337

Ultrahigh Thermal Isolation Across Heterogeneously Layered Two-dimensional Materials

Abstract

Heterogeneous integration of nanomaterials has enabled advanced electronics and photonics applications. However, similar progress has been challenging for thermal applications, in part due to shorter wavelengths of heat carriers (phonons) compared to electrons and photons. Here, we demonstrate unusually high thermal isolation across ultrathin heterostructures, achieved by layering atomically thin two-dimensional (2D) materials. We realize artificial stacks of monolayer graphene, MoS, and WSe with thermal resistance greater than 100 times thicker SiO and effective thermal conductivity lower than air at room temperature. Using Raman thermometry, we simultaneously identify the thermal resistance between any 2D monolayers in the stack. Ultrahigh thermal isolation is achieved through the mismatch in mass density and phonon density of states between the 2D layers. These thermal metamaterials are an example in the emerging field of phononics and could find applications where ultrathin thermal insulation is desired, in thermal energy harvesting, or for routing heat in ultracompact geometries.

Citing Articles

Thermoelectric properties of XX- and XY-stacked GeS/GeSe van der Waals heterostructures from DFT and BTP calculations.

Mamani Gonzalo F, Piotrowski M, Rodriguez Delgado E, Polo Bravo C, Chacaltana Garcia J, Ayala Arenas J Sci Rep. 2024; 14(1):26844.

PMID: 39501000 PMC: 11538335. DOI: 10.1038/s41598-024-78250-4.


Biaxial Strain Transfer in Monolayer MoS and WSe Transistor Structures.

Michail A, Yang J, Filintoglou K, Balakeras N, Nattoo C, Bailey C ACS Appl Mater Interfaces. 2024; 16(37):49602-49611.

PMID: 39226175 PMC: 11420877. DOI: 10.1021/acsami.4c07216.


Zero-power infrared switch with two-phase microfluidic flow and a 2D material thermal isolation layer.

Zhang Z, Li P, Zou Y Microsyst Nanoeng. 2024; 10(1):122.

PMID: 39218925 PMC: 11366745. DOI: 10.1038/s41378-024-00761-x.


Interfacial Thermal Resistive Switching in (Pt,Cr)/SrTiO Devices.

Alvarez-Martinez V, Ramos R, Leboran V, Sarantopoulos A, Dittmann R, Rivadulla F ACS Appl Mater Interfaces. 2024; 16(12):15043-15049.

PMID: 38477897 PMC: 10982933. DOI: 10.1021/acsami.3c19285.


Tuning the Through-Plane Lattice Thermal Conductivity in van der Waals Structures through Rotational (Dis)ordering.

Eriksson F, Fransson E, Linderalv C, Fan Z, Erhart P ACS Nano. 2023; 17(24):25565-25574.

PMID: 38063207 PMC: 10753894. DOI: 10.1021/acsnano.3c09717.


References
1.
Costescu R, Cahill D, Fabreguette F, Sechrist Z, George S . Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science. 2004; 303(5660):989-90. DOI: 10.1126/science.1093711. View

2.
Chiritescu C, Cahill D, Nguyen N, Johnson D, Bodapati A, Keblinski P . Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science. 2006; 315(5810):351-3. DOI: 10.1126/science.1136494. View

3.
Faist J, Capasso F, Sivco D, Sirtori C, Hutchinson A, Cho A . Quantum cascade laser. Science. 1994; 264(5158):553-6. DOI: 10.1126/science.264.5158.553. View

4.
Das A, Pisana S, Chakraborty B, Piscanec S, Saha S, Waghmare U . Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol. 2008; 3(4):210-5. DOI: 10.1038/nnano.2008.67. View

5.
Freitag M, Steiner M, Martin Y, Perebeinos V, Chen Z, Tsang J . Energy dissipation in graphene field-effect transistors. Nano Lett. 2009; 9(5):1883-8. DOI: 10.1021/nl803883h. View