» Articles » PMID: 31447933

First Visualization of the Human Subarachnoid Space and Brain Cortex Optical Coherence Tomography

Overview
Specialty Neurology
Date 2019 Aug 27
PMID 31447933
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The present work explores optical coherence tomography (OCT) as a suitable neuroimaging modality of the subarachnoid space (SAS). Patients ( = 26) with frontolateral craniotomy were recruited. The temporal and frontal arachnoid mater and adjacent anatomical structures were scanned using microscope-integrated three-dimensional OCT, (iOCT). Analysis revealed a detailed depiction of the SAS (76.9%) with delineation of the internal microanatomical structures such as the arachnoid barrier cell membrane (ABCM; 96.2%), trabecular system (50.2%), internal blood vessels (96.2%), pia mater (26.9%) and the brain cortex (96.2%). Orthogonal distance measuring was possible. The SAS showed a mean depth of 570 µm frontotemporal. The ABCM showed a mean depth of 74 µm frontotemporal. These results indicate that OCT provides a dynamic, non-invasive tool for real-time imaging of the SAS and adjacent anatomical structures at micrometer spatial resolution. Further studies are necessary to evaluate the value of OCT during microsurgical procedures.

Citing Articles

Revisiting equivalent optical properties for cerebrospinal fluid to improve diffusion-based modeling accuracy in the brain.

Lewis A, Fang Q Neurophotonics. 2025; 12(1):015009.

PMID: 39957838 PMC: 11828630. DOI: 10.1117/1.NPh.12.1.015009.


Microscope integrated MHz optical coherence tomography system for neurosurgery: development and clinical in-vivo imaging.

Draxinger W, Detrez N, Strenge P, Danicke V, Theisen-Kunde D, Schutzeck L Biomed Opt Express. 2024; 15(10):5960-5979.

PMID: 39421776 PMC: 11482179. DOI: 10.1364/BOE.530976.


Advances and controversies in meningeal biology.

Betsholtz C, Engelhardt B, Koh G, McDonald D, Proulx S, Siegenthaler J Nat Neurosci. 2024; 27(11):2056-2072.

PMID: 39333784 PMC: 11862877. DOI: 10.1038/s41593-024-01701-8.


Revisiting equivalent optical properties for cerebrospinal fluid to improve diffusion-based modeling accuracy in the brain.

Lewis A, Fang Q bioRxiv. 2024; .

PMID: 39229084 PMC: 11370459. DOI: 10.1101/2024.08.20.608859.


Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level.

Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky A Cells. 2023; 12(22).

PMID: 37998395 PMC: 10670380. DOI: 10.3390/cells12222660.


References
1.
Fujimoto J, Pitris C, Boppart S, Brezinski M . Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000; 2(1-2):9-25. PMC: 1531864. DOI: 10.1038/sj.neo.7900071. View

2.
Williams Z, Schuman J, Gamell L, Nemi A, Hertzmark E, Fujimoto J . Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am J Ophthalmol. 2002; 134(4):538-46. DOI: 10.1016/s0002-9394(02)01683-5. View

3.
Van Velthoven V . Intraoperative ultrasound imaging: comparison of pathomorphological findings in US versus CT, MRI and intraoperative findings. Acta Neurochir Suppl. 2003; 85:95-9. DOI: 10.1007/978-3-7091-6043-5_13. View

4.
Drexler W, Sattmann H, Hermann B, Ko T, Stur M, Unterhuber A . Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003; 121(5):695-706. DOI: 10.1001/archopht.121.5.695. View

5.
Boppart S . Optical coherence tomography: technology and applications for neuroimaging. Psychophysiology. 2003; 40(4):529-41. DOI: 10.1111/1469-8986.00055. View