» Articles » PMID: 31393067

Km23-1/DYNLRB1 Regulation of MEK/ERK Signaling and R-Ras in Invasive Human Colorectal Cancer Cells

Overview
Journal Cell Biol Int
Specialty Cell Biology
Date 2019 Aug 9
PMID 31393067
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

We previously found that km23-1/DYNLRB1 is required for transforming growth factor-β (TGFβ) production through Ras/ERK pathways in TGFβ-sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23-1/DYNLRB1 is required for mitogen-activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23-1/DYNLRB1-siRNA inhibition of phospho-(p)-MEK immunostaining in RKO cells. Furthermore, we show that CRISPR-Cas9 knock-out (KO) of km23-1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD-1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ-mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ-mediated activation of MEK1/2 or c-Jun N-terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B-Raf, extracellular signal-regulated kinase (ERK), and p-ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23-1/DYNLRB1 co-sedimented with Ras, p-ERK, and ERK in fractions that did not contain components of holo-dynein. Thus, km23-1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein-independent km23-1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R-Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23-1/DYNLRB1 and RRas wase co-localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23-1/DYNLRB1-R-Ras complex in CRC invasion.

Citing Articles

METTL3/YTHDF2 m6A axis promotes the malignant progression of bladder cancer by epigenetically suppressing RRAS.

Chen J, Chen D, Wang D, Xiao Y, Zhu S, Xu X Oncol Rep. 2023; 49(5).

PMID: 36960869 PMC: 10086563. DOI: 10.3892/or.2023.8531.

References
1.
Vaughan K, Vallee R . Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol. 1995; 131(6 Pt 1):1507-16. PMC: 2120689. DOI: 10.1083/jcb.131.6.1507. View

2.
Gysin S, Salt M, Young A, McCormick F . Therapeutic strategies for targeting ras proteins. Genes Cancer. 2011; 2(3):359-72. PMC: 3128641. DOI: 10.1177/1947601911412376. View

3.
Ehrhardt A, David M, Ehrhardt G, Schrader J . Distinct mechanisms determine the patterns of differential activation of H-Ras, N-Ras, K-Ras 4B, and M-Ras by receptors for growth factors or antigen. Mol Cell Biol. 2004; 24(14):6311-23. PMC: 434254. DOI: 10.1128/MCB.24.14.6311-6323.2004. View

4.
Tang Q, Staub C, Gao G, Jin Q, Wang Z, Ding W . A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell. 2002; 13(12):4484-96. PMC: 138648. DOI: 10.1091/mbc.e02-05-0245. View

5.
Siegel R, Miller K, Fedewa S, Ahnen D, Meester R, Barzi A . Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017; 67(3):177-193. DOI: 10.3322/caac.21395. View