» Articles » PMID: 31391815

Changing Paradigms in Control: Considering the Spatial Heterogeneity of Dengue Transmission

Overview
Specialty Public Health
Date 2019 Aug 9
PMID 31391815
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Current dengue vector control strategies, focusing on reactive implementation of insecticide-based interventions in response to clinically apparent disease manifestations, tend to be inefficient, short-lived, and unsustainable within the worldwide epidemiological scenario of virus epidemic recrudescence. As a result of a series of expert meetings and deliberations, a paradigm shift is occurring and a new strategy, using risk stratification at the city level in order to concentrate proactive, sustained efforts in areas at high risk for transmission, has emerged. In this article, the authors 1) outline this targeted, proactive intervention strategy, within the context of dengue epidemiology, the dynamics of its transmission, and current Aedes control strategies, and 2) provide support from published literature for the need to empirically test its impact on dengue transmission as well as on the size of disease outbreaks. As chikungunya and Zika viruses continue to expand their range, the need for a science-based, proactive approach for control of urban Aedes spp. mosquitoes will become a central focus of integrated disease management planning.

Citing Articles

Modeling Intraday Aedes-human exposure dynamics enhances dengue risk prediction.

Knoblauch S, Heidecke J, de A Rocha A, Paolucci Pimenta P, Reinmuth M, Lautenbach S Sci Rep. 2025; 15(1):7994.

PMID: 40055392 PMC: 11889163. DOI: 10.1038/s41598-025-91950-9.


Mapping priority areas for measles surveillance: stratifying reintroduction and transmission risk in Rio de Janeiro, Brazil.

Dos Santos Y, Praca H, Pedro A, Reis L, Conceicao P, Gibson G Rev Panam Salud Publica. 2024; 48:e123.

PMID: 39569081 PMC: 11577482. DOI: 10.26633/RPSP.2024.123.


Spatial and temporal analysis on the impact of ultra-low volume indoor insecticide spraying on Aedes aegypti household density.

Kawiecki A, Morrison A, Barker C Parasit Vectors. 2024; 17(1):254.

PMID: 38863023 PMC: 11165869. DOI: 10.1186/s13071-024-06308-3.


Historical Hot Spots of Dengue and Zika Viruses to Guide Targeted Vector Control in San Juan, Puerto Rico (2010-2022).

Barrera R, Ruiz J, Adams L, Marzan-Rodriguez M, Paz-Bailey G Am J Trop Med Hyg. 2024; 110(4):731-737.

PMID: 38412550 PMC: 10993837. DOI: 10.4269/ajtmh.23-0627.


[Stratification of risk areas for measles transmission: a systematic reviewEstratificación de las zonas de riesgo de transmisión del sarampión: revisión sistemática].

Conceicao P, Pedro A, Praca H, Dos Santos Y, Reis L, Gibson G Rev Panam Salud Publica. 2024; 48:e1.

PMID: 38226153 PMC: 10787521. DOI: 10.26633/RPSP.2024.1.


References
1.
Barrera R, Delgado N, Jimenez M, Villalobos I, Romero I . [Stratification of a hyperendemic city in hemorrhagic dengue]. Rev Panam Salud Publica. 2001; 8(4):225-33. DOI: 10.1590/s1020-49892000000900001. View

2.
Barbazan P, Yoksan S, Gonzalez J . Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. Microbes Infect. 2002; 4(7):699-705. DOI: 10.1016/s1286-4579(02)01589-7. View

3.
da Gloria Teixeira M, Barreto M, Costa M, Ferreira L, Vasconcelos P, Cairncross S . Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Trop Med Int Health. 2002; 7(9):757-62. DOI: 10.1046/j.1365-3156.2002.00930.x. View

4.
Rothman A . Dengue: defining protective versus pathologic immunity. J Clin Invest. 2004; 113(7):946-51. PMC: 379334. DOI: 10.1172/JCI21512. View

5.
Lloyd-Smith J, Schreiber S, Kopp P, Getz W . Superspreading and the effect of individual variation on disease emergence. Nature. 2005; 438(7066):355-9. PMC: 7094981. DOI: 10.1038/nature04153. View