» Articles » PMID: 31372664

Functional Analysis of Three Putative Galactofuranosyltransferases with Redundant Functions in Galactofuranosylation in Aspergillus Niger

Overview
Journal Arch Microbiol
Specialty Microbiology
Date 2019 Aug 3
PMID 31372664
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Galactofuranose (Galf)-containing glycostructures are important to secure the integrity of the fungal cell wall. Golgi-localized Galf-transferases (Gfs) have been identified in Aspergillus nidulans and Aspergillus fumigatus. BLASTp searches identified three putative Galf-transferases in Aspergillus niger. Phylogenetic analysis showed that they group in three distinct groups. Characterization of the three Galf-transferases in A. niger by constructing single, double, and triple mutants revealed that gfsA is most important for Galf biosynthesis. The growth phenotypes of the ΔgfsA mutant are less severe than that of the ΔgfsAC mutant, indicating that GfsA and GfsC have redundant functions. Deletion of gfsB did not result in any growth defect and combining ΔgfsB with other deletion mutants did not exacerbate the growth phenotype. RT-qPCR experiments showed that induction of the agsA gene was higher in the ΔgfsAC and ΔgfsABC compared to the single mutants, indicating a severe cell wall stress response after multiple gfs gene deletions.

Citing Articles

Substrate binding and catalytic mechanism of UDP-α-D-galactofuranose: β-galactofuranoside β-(1→5)-galactofuranosyltransferase GfsA.

Oka T, Okuno A, Hira D, Teramoto T, Chihara Y, Hirata R PNAS Nexus. 2024; 3(11):pgae482.

PMID: 39507050 PMC: 11538602. DOI: 10.1093/pnasnexus/pgae482.


Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow fungus ().

Kadooka C, Tanaka Y, Hira D, Maruyama J, Goto M, Oka T Front Microbiol. 2023; 14:1110996.

PMID: 36814571 PMC: 9939772. DOI: 10.3389/fmicb.2023.1110996.


Galactofuranose (Galf)-containing sugar chain contributes to the hyphal growth, conidiation and virulence of F. oxysporum f.sp. cucumerinum.

Zhou H, Xu Y, Ebel F, Jin C PLoS One. 2021; 16(7):e0250064.

PMID: 34329342 PMC: 8323920. DOI: 10.1371/journal.pone.0250064.


Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future.

Archer M, Xu J Genes (Basel). 2021; 12(7).

PMID: 34202507 PMC: 8307107. DOI: 10.3390/genes12070960.


Galactomannan Produced by : An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker.

Fontaine T, Latge J J Fungi (Basel). 2020; 6(4).

PMID: 33198419 PMC: 7712326. DOI: 10.3390/jof6040283.


References
1.
Punt P, van den Hondel C . Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol. 1992; 216:447-57. DOI: 10.1016/0076-6879(92)16041-h. View

2.
Heesemann L, Kotz A, Echtenacher B, Broniszewska M, Routier F, Hoffmann P . Studies on galactofuranose-containing glycostructures of the pathogenic mold Aspergillus fumigatus. Int J Med Microbiol. 2011; 301(6):523-30. DOI: 10.1016/j.ijmm.2011.02.003. View

3.
El-Ganiny A, Sanders D, Kaminskyj S . Aspergillus nidulans UDP-galactopyranose mutase, encoded by ugmA plays key roles in colony growth, hyphal morphogenesis, and conidiation. Fungal Genet Biol. 2008; 45(12):1533-42. DOI: 10.1016/j.fgb.2008.09.008. View

4.
El-Ganiny A, Sheoran I, Sanders D, Kaminskyj S . Aspergillus nidulans UDP-glucose-4-epimerase UgeA has multiple roles in wall architecture, hyphal morphogenesis, and asexual development. Fungal Genet Biol. 2010; 47(7):629-35. DOI: 10.1016/j.fgb.2010.03.002. View

5.
Engel J, Schmalhorst P, Dork-Bousset T, Ferrieres V, Routier F . A single UDP-galactofuranose transporter is required for galactofuranosylation in Aspergillus fumigatus. J Biol Chem. 2009; 284(49):33859-68. PMC: 2797156. DOI: 10.1074/jbc.M109.070219. View