» Articles » PMID: 31367325

Metal-ligand Covalency Enables Room Temperature Molecular Qubit Candidates

Overview
Journal Chem Sci
Specialty Chemistry
Date 2019 Aug 2
PMID 31367325
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal-ligand covalency on spin-lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin-lattice relaxation through a series of four molecules featuring V-S, V-Se, Cu-S, and Cu-Se bonds, the PhP salts of the complexes [V(CHS)] (), [Cu(CHS)] (), [V(CHSe)] (), and [Cu(CHSe)] (). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M-L covalency, and consequently spin-delocalization onto the ligand, on elongating spin-lattice relaxation times. Notably, we observe the longest spin-lattice relaxation times in , and spin echos that survive until room temperature in both copper complexes ( and ).

Citing Articles

The role of electronic excited states in the spin-lattice relaxation of spin-1/2 molecules.

Mariano L, Nguyen V, Petersen J, Bjornsson M, Bendix J, Eaton G Sci Adv. 2025; 11(7):eadr0168.

PMID: 39937899 PMC: 11817928. DOI: 10.1126/sciadv.adr0168.


A Spectrochemical Series for Electron Spin Relaxation.

Kazmierczak N, Xia K, Sutcliffe E, Aalto J, Hadt R J Am Chem Soc. 2025; 147(3):2849-2859.

PMID: 39778145 PMC: 11760167. DOI: 10.1021/jacs.4c16571.


Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Zhou A, Li D, Tan M, Lv Y, Pang S, Zhao X Nat Commun. 2024; 15(1):10763.

PMID: 39737955 PMC: 11685587. DOI: 10.1038/s41467-024-54989-2.


Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

Kazmierczak N, Oyala P, Hadt R ACS Cent Sci. 2024; 10(12):2353-2362.

PMID: 39735309 PMC: 11672536. DOI: 10.1021/acscentsci.4c01177.


Low temperature decoherence dynamics in molecular spin systems using the Lindblad master equation.

Krogmeier T, Schlimgen A, Head-Marsden K Chem Sci. 2024; 15(47):19834-19841.

PMID: 39568905 PMC: 11575596. DOI: 10.1039/d4sc05627b.


References
1.
Zhou Y, Bowler B, Eaton G, Eaton S . Electron spin lattice relaxation rates for S = 12 molecular species in glassy matrices or magnetically dilute solids at temperatures between 10 and 300 K. J Magn Reson. 1999; 139(1):165-74. DOI: 10.1006/jmre.1999.1763. View

2.
Stoll S, Schweiger A . EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson. 2005; 178(1):42-55. DOI: 10.1016/j.jmr.2005.08.013. View

3.
Fielding A, Fox S, Millhauser G, Chattopadhyay M, Kroneck P, Fritz G . Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K. J Magn Reson. 2005; 179(1):92-104. PMC: 2919208. DOI: 10.1016/j.jmr.2005.11.011. View

4.
Finazzo C, Calle C, Stoll S, Van Doorslaer S, Schweiger A . Matrix effects on copper(II)phthalocyanine complexes. A combined continuous wave and pulse EPR and DFT study. Phys Chem Chem Phys. 2006; 8(16):1942-53. DOI: 10.1039/b516184c. View

5.
Sproules S, Weyhermuller T, DeBeer S, Wieghardt K . Six-membered electron transfer series [V(dithiolene)(3)](z) (z = 1+, 0, 1-, 2-, 3-, 4-). An X-ray absorption spectroscopic and density functional theoretical study. Inorg Chem. 2010; 49(11):5241-61. DOI: 10.1021/ic100344f. View