» Articles » PMID: 31366883

Time-reversal Symmetry Breaking Type-II Weyl State in YbMnBi

Abstract

Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

Citing Articles

The discovery of three-dimensional Van Hove singularity.

Wu W, Shi Z, Ozerov M, Du Y, Wang Y, Ni X Nat Commun. 2024; 15(1):2313.

PMID: 38485978 PMC: 10940667. DOI: 10.1038/s41467-024-46626-9.


Evidence of superconducting Fermi arcs.

Kuibarov A, Suvorov O, Vocaturo R, Fedorov A, Lou R, Merkwitz L Nature. 2024; 626(7998):294-299.

PMID: 38326595 PMC: 10849961. DOI: 10.1038/s41586-023-06977-7.


High-Mobility Topological Semimetals as Novel Materials for Huge Magnetoresistance Effect and New Type of Quantum Hall Effect.

Zivieri R, Lumetti S, Letang J Materials (Basel). 2023; 16(24).

PMID: 38138720 PMC: 10744697. DOI: 10.3390/ma16247579.


Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal.

Li C, Zhang J, Wang Y, Liu H, Guo Q, Rienks E Nat Commun. 2023; 14(1):7185.

PMID: 37938548 PMC: 10632385. DOI: 10.1038/s41467-023-42996-8.


Electronic Band Structure and Surface States in Dirac Semimetal LaAgSb.

Rosmus M, Olszowska N, Bukowski Z, Starowicz P, Piekarz P, Ptok A Materials (Basel). 2022; 15(20).

PMID: 36295236 PMC: 9609572. DOI: 10.3390/ma15207168.


References
1.
Liu E, Sun Y, Kumar N, Muchler L, Sun A, Jiao L . Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal. Nat Phys. 2018; 14(11):1125-1131. PMC: 6217931. DOI: 10.1038/s41567-018-0234-5. View

2.
Soluyanov A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X . Type-II Weyl semimetals. Nature. 2015; 527(7579):495-8. DOI: 10.1038/nature15768. View

3.
Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D . Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science. 2014; 343(6173):864-7. DOI: 10.1126/science.1245085. View

4.
Neupane M, Xu S, Sankar R, Alidoust N, Bian G, Liu C . Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun. 2014; 5:3786. DOI: 10.1038/ncomms4786. View

5.
Wang Z, Vergniory M, Kushwaha S, Hirschberger M, Chulkov E, Ernst A . Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. Phys Rev Lett. 2016; 117(23):236401. DOI: 10.1103/PhysRevLett.117.236401. View