» Articles » PMID: 31359995

Classification of Functional Metagenomes Recovered from Different Environmental Samples

Overview
Journal Bioinformation
Specialty Biology
Date 2019 Jul 31
PMID 31359995
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).

Citing Articles

Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population.

Liu Y, Zhu J, Wang H, Lu W, Lee Y, Zhao J BMC Genomics. 2022; 23(1):850.

PMID: 36564713 PMC: 9789565. DOI: 10.1186/s12864-022-09087-2.

References
1.
Akond Z, Alam M, Haque Mollah M . Biomarker Identification from RNA-Seq Data using a Robust Statistical Approach. Bioinformation. 2018; 14(4):153-163. PMC: 6016759. DOI: 10.6026/97320630014153. View

2.
Sharma A, Gupta A, Kumar S, Dhakan D, Sharma V . Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences. Genomics. 2015; 106(1):1-6. DOI: 10.1016/j.ygeno.2015.04.001. View

3.
Dinsdale E, Edwards R, Bailey B, Tuba I, Akhter S, McNair K . Multivariate analysis of functional metagenomes. Front Genet. 2013; 4:41. PMC: 3619665. DOI: 10.3389/fgene.2013.00041. View

4.
Ramette A . Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007; 62(2):142-60. PMC: 2121141. DOI: 10.1111/j.1574-6941.2007.00375.x. View

5.
Mota Carvalho T, Silva J, Calil I, Fontes E, Ribeiro Cerqueira F . Rama: a machine learning approach for ribosomal protein prediction in plants. Sci Rep. 2017; 7(1):16273. PMC: 5701237. DOI: 10.1038/s41598-017-16322-4. View