» Articles » PMID: 31355747

Spinal V2b Neurons Reveal a Role for Ipsilateral Inhibition in Speed Control

Overview
Journal Elife
Specialty Biology
Date 2019 Jul 30
PMID 31355747
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.

Citing Articles

Coordinated spinal locomotor network dynamics emerge from cell-type-specific connectivity patterns.

Wandler F, Lemberger B, McLean D, Murray J bioRxiv. 2025; .

PMID: 40060557 PMC: 11888175. DOI: 10.1101/2024.12.20.629829.


Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.

Paracha M, Brezinski A, Singh R, Sinson E, Satkunendrarajah K Cells. 2025; 14(4).

PMID: 39996760 PMC: 11854602. DOI: 10.3390/cells14040288.


The spinal premotor network driving scratching flexor and extensor alternation.

Yao M, Nagamori A, Azim E, Sharpee T, Goulding M, Golomb D bioRxiv. 2025; .

PMID: 39829804 PMC: 11741273. DOI: 10.1101/2025.01.08.631866.


Cell-type-specific origins of locomotor rhythmicity at different speeds in larval zebrafish.

Agha M, Kishore S, McLean D Elife. 2024; 13.

PMID: 39287613 PMC: 11407768. DOI: 10.7554/eLife.94349.


Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome.

Miles K, Barker C, Russell K, Appel B, Doll C J Neurosci. 2024; 44(31).

PMID: 38969506 PMC: 11293453. DOI: 10.1523/JNEUROSCI.2275-23.2024.


References
1.
Berkowitz A . Both shared and specialized spinal circuitry for scratching and swimming in turtles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002; 188(3):225-34. DOI: 10.1007/s00359-002-0297-7. View

2.
Chopek J, Nascimento F, Beato M, Brownstone R, Zhang Y . Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits. Cell Rep. 2018; 25(1):146-156.e3. PMC: 6180347. DOI: 10.1016/j.celrep.2018.08.095. View

3.
Muller U, van Leeuwen J . Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J Exp Biol. 2004; 207(Pt 5):853-68. DOI: 10.1242/jeb.00821. View

4.
Kleinlogel S, Feldbauer K, Dempski R, Fotis H, Wood P, Bamann C . Ultra light-sensitive and fast neuronal activation with the Ca²+-permeable channelrhodopsin CatCh. Nat Neurosci. 2011; 14(4):513-8. DOI: 10.1038/nn.2776. View

5.
Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri K, Schindelin J, Cardona A . Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017; 33(15):2424-2426. DOI: 10.1093/bioinformatics/btx180. View